Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kühle, Reinald [VerfasserIn]   i
 Ringwald, Friedemann [VerfasserIn]   i
 Bouffleur, Frederic [VerfasserIn]   i
 Hagen, Niclas [VerfasserIn]   i
 Schaufelberger, Matthias [VerfasserIn]   i
 Nahm, Werner [VerfasserIn]   i
 Hoffmann, Jürgen [VerfasserIn]   i
 Freudlsperger, Christian [VerfasserIn]   i
 Engel, Michael [VerfasserIn]   i
 Eisenmann, Urs [VerfasserIn]   i
Titel:The use of artificial intelligence for the classification of craniofacial deformities
Verf.angabe:Reinald Kuehle, Friedemann Ringwald, Frederic Bouffleur, Niclas Hagen, Matthias Schaufelberger, Werner Nahm, Jürgen Hoffmann, Christian Freudlsperger, Michael Engel and Urs Eisenmann
E-Jahr:2023
Jahr:14 November 2023
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 23.01.2024
Weitere Titel:Titel des special issue: Updates and Challenges in Maxillo-Facial Surgery
Titel Quelle:Enthalten in: Journal of Clinical Medicine
Ort Quelle:Basel : MDPI, 2012
Jahr Quelle:2023
Band/Heft Quelle:12(2023), 22, special issue, Artikel-ID 7082, Seite 1-12
ISSN Quelle:2077-0383
Abstract:Positional cranial deformities are a common finding in toddlers, yet differentiation from craniosynostosis can be challenging. The aim of this study was to train convolutional neural networks (CNNs) to classify craniofacial deformities based on 2D images generated using photogrammetry as a radiation-free imaging technique. A total of 487 patients with photogrammetry scans were included in this retrospective cohort study: children with craniosynostosis (n = 227), positional deformities (n = 206), and healthy children (n = 54). Three two-dimensional images were extracted from each photogrammetry scan. The datasets were divided into training, validation, and test sets. During the training, fine-tuned ResNet-152s were utilized. The performance was quantified using tenfold cross-validation. For the detection of craniosynostosis, sensitivity was at 0.94 with a specificity of 0.85. Regarding the differentiation of the five existing classes (trigonocephaly, scaphocephaly, positional plagiocephaly left, positional plagiocephaly right, and healthy), sensitivity ranged from 0.45 (positional plagiocephaly left) to 0.95 (scaphocephaly) and specificity ranged from 0.87 (positional plagiocephaly right) to 0.97 (scaphocephaly). We present a CNN-based approach to classify craniofacial deformities on two-dimensional images with promising results. A larger dataset would be required to identify rarer forms of craniosynostosis as well. The chosen 2D approach enables future applications for digital cameras or smartphones.
DOI:doi:10.3390/jcm12227082
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/jcm12227082
 kostenfrei: Volltext: https://www.mdpi.com/2077-0383/12/22/7082
 DOI: https://doi.org/10.3390/jcm12227082
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 congenital abnormalities
 craniosynostoses
 deep learning
 photogrammetry
 trigonocephaly
K10plus-PPN:187867787X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69164337   QR-Code
zum Seitenanfang