Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Cai, Lie [VerfasserIn]   i
 Sidey-Gibbons, Chris [VerfasserIn]   i
 Nees, Juliane [VerfasserIn]   i
 Riedel, Fabian [VerfasserIn]   i
 Schäfgen, Benedikt [VerfasserIn]   i
 Togawa, Riku [VerfasserIn]   i
 Killinger, Kristina [VerfasserIn]   i
 Heil, Jörg [VerfasserIn]   i
 Pfob, André [VerfasserIn]   i
 Golatta, Michael [VerfasserIn]   i
Titel:Ultrasound radiomics features to identify patients with triple-negative breast cancer
Titelzusatz:a retrospective, single-center study
Verf.angabe:Lie Cai, Chris Sidey-Gibbons, PhD, Juliane Nees, MD, Fabian Riedel, MD, Benedikt Schaefgen, MD,Riku Togawa, MD, Kristina Killinger, MD, Joerg Heil, MD, André Pfob, MD, Michael Golatta, MD
Ausgabe:Online version of record before inclusion in an issue
E-Jahr:2023
Jahr:09 December 2023
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 29.01.2024
Titel Quelle:Enthalten in: Journal of ultrasound in medicine
Ort Quelle:Hoboken, NJ : Wiley, 1982
Jahr Quelle:2023
Band/Heft Quelle:(2023), Seite 1-12
ISSN Quelle:1550-9613
Abstract:Objectives Patients with triple-negative breast cancer (TNBC) exhibit a fast tumor growth rate and poor survival outcomes. In this study, we aimed to develop and compare intelligent algorithms using ultrasound radiomics features in addition to clinical variables to identify patients with TNBC prior to histopathologic diagnosis. Methods We used single-center, retrospective data of patients who underwent ultrasound before histopathologic verification and subsequent neoadjuvant systemic treatment (NAST). We developed a logistic regression with an elastic net penalty algorithm using pretreatment ultrasound radiomics features in addition to patient and tumor variables to identify patients with TNBC. Findings were compared to the histopathologic evaluation of the biopsy specimen. The main outcome measure was the area under the curve (AUC). Results We included 1161 patients, 813 in the development set and 348 in the validation set. Median age was 50.1 years and 24.4% (283 of 1161) had TNBC. The integrative model using radiomics and clinical information showed significantly better performance in identifying TNBC compared to the radiomics model (AUC: 0.71, 95% confidence interval [CI]: 0.65-0.76 versus 0.64, 95% CI: 0.57-0.71, P = .004). The five most important variables were cN status, shape surface volume ratio (SA:V), gray level co-occurrence matrix (GLCM) correlation, gray level dependence matrix (GLDM) dependence nonuniformity normalized, and age. Patients with TNBC were more often categorized as BI-RADS 4 than BI-RADS 5 compared to non-TNBC patients (P = .002). Conclusion A machine learning algorithm showed promising potential to identify patients with TNBC using ultrasound radiomics features and clinical information prior to histopathologic evaluation.
DOI:doi:10.1002/jum.16377
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/jum.16377
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/jum.16377
 DOI: https://doi.org/10.1002/jum.16377
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:breast cancer
 diagnostic imaging
 machine learning
 neoadjuvant systemic treatment
 triple-negative breast cancer
K10plus-PPN:1879409445
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69166780   QR-Code
zum Seitenanfang