Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schaufelberger, Matthias [VerfasserIn]   i
 Kaiser, Christian [VerfasserIn]   i
 Kühle, Reinald [VerfasserIn]   i
 Wachter, Andreas [VerfasserIn]   i
 Bouffleur, Frederic [VerfasserIn]   i
 Hagen, Niclas [VerfasserIn]   i
 Ringwald, Friedemann [VerfasserIn]   i
 Eisenmann, Urs [VerfasserIn]   i
 Hoffmann, Jürgen [VerfasserIn]   i
 Engel, Michael [VerfasserIn]   i
 Freudlsperger, Christian [VerfasserIn]   i
 Nahm, Werner [VerfasserIn]   i
Titel:3D-2D distance maps conversion enhances classification of craniosynostosis
Verf.angabe:Matthias Schaufelberger, Christian Kaiser, Reinald Kühle, Andreas Wachter, Frederic Weichel, Niclas Hagen, Friedemann Ringwald, Urs Eisenmann, Jürgen Hoffmann, Michael Engel, Christian Freudlsperger, and Werner Nahm
E-Jahr:2023
Jahr:November 2023
Umfang:10 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 06.02.2024
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on biomedical engineering
Ort Quelle:New York, NY : IEEE, 1964
Jahr Quelle:2023
Band/Heft Quelle:70(2023), 11 vom: Nov., Seite 3156-3165
ISSN Quelle:1558-2531
Abstract:Objective: Diagnosis of craniosynostosis using photogrammetric 3D surface scans is a promising radiation-free alternative to traditional computed tomography. We propose a 3D surface scan to 2D distance map conversion enabling the usage of the first convolutional neural networks (CNNs)-based classification of craniosynostosis. Benefits of using 2D images include preserving patient anonymity, enabling data augmentation during training, and a strong under-sampling of the 3D surface with good classification performance. Methods: The proposed distance maps sample 2D images from 3D surface scans using a coordinate transformation, ray casting, and distance extraction. We introduce a CNN-based classification pipeline and compare our classifier to alternative approaches on a dataset of 496 patients. We investigate into low-resolution sampling, data augmentation, and attribution mapping. Results: Resnet18 outperformed alternative classifiers on our dataset with an F1-score of 0.964 and an accuracy of 98.4%. Data augmentation on 2D distance maps increased performance for all classifiers. Under-sampling allowed 256-fold computation reduction during ray casting while retaining an F1-score of 0.92. Attribution maps showed high amplitudes on the frontal head. Conclusion: We demonstrated a versatile mapping approach to extract a 2D distance map from the 3D head geometry increasing classification performance, enabling data augmentation during training on 2D distance maps, and the usage of CNNs. We found that low-resolution images were sufficient for a good classification performance. Significance: Photogrammetric surface scans are a suitable craniosynostosis diagnosis tool for clinical practice. Domain transfer to computed tomography seems likely and can further contribute to reducing ionizing radiation exposure for infants.
DOI:doi:10.1109/TBME.2023.3278030
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1109/TBME.2023.3278030
 kostenfrei: Volltext: https://ieeexplore.ieee.org/document/10129889/authors#authors
 DOI: https://doi.org/10.1109/TBME.2023.3278030
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:2D conversion
 classification
 CNN
 convolutional neural network
 craniosynostosis
 data augmentation
 distance map
 Head
 Magnetic heads
 Pediatrics
 photogrammetric surface scans
 resolution
 Shape
 Surgery
 Three-dimensional displays
 Training
K10plus-PPN:1880051370
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69177860   QR-Code
zum Seitenanfang