Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dong, Bowei [VerfasserIn]   i
 Aggarwal, Samarth [VerfasserIn]   i
 Zhou, Wen [VerfasserIn]   i
 Ali, Utku Emre [VerfasserIn]   i
 Farmakidis, Nikolaos [VerfasserIn]   i
 Lee, June Sang [VerfasserIn]   i
 He, Yuhan [VerfasserIn]   i
 Li, Xuan [VerfasserIn]   i
 Kwong, Dim-Lee [VerfasserIn]   i
 Wright, C. D. [VerfasserIn]   i
 Pernice, Wolfram [VerfasserIn]   i
 Bhaskaran, H. [VerfasserIn]   i
Titel:Higher-dimensional processing using a photonic tensor core with continuous-time data
Verf.angabe:Bowei Dong, Samarth Aggarwal, Wen Zhou, Utku Emre Ali, Nikolaos Farmakidis, June Sang Lee, Yuhan He, Xuan Li, Dim-Lee Kwong, C.D. Wright, Wolfram H.P. Pernice, & H. Bhaskaran
E-Jahr:2023
Jahr:19 October 2023
Umfang:12 S.
Fussnoten:Gesehen am 06.02.2024
Titel Quelle:Enthalten in: Nature photonics
Ort Quelle:London [u.a.] : Nature Publ. Group, 2006
Jahr Quelle:2023
Band/Heft Quelle:17(2023), 12, Seite 1080-1088, [3]
ISSN Quelle:1749-4893
Abstract:New developments in hardware-based ‘accelerators’ range from electronic tensor cores and memristor-based arrays to photonic implementations. The goal of these approaches is to handle the exponentially growing computational load of machine learning, which currently requires the doubling of hardware capability approximately every 3.5 months. One solution is increasing the data dimensionality that is processable by such hardware. Although two-dimensional data processing by multiplexing space and wavelength has been previously reported, the use of three-dimensional processing has not yet been implemented in hardware. In this paper, we introduce the radio-frequency modulation of photonic signals to increase parallelization, adding an additional dimension to the data alongside spatially distributed non-volatile memories and wavelength multiplexing. We leverage higher-dimensional processing to configure such a system to an architecture compatible with edge computing frameworks. Our system achieves a parallelism of 100, two orders higher than implementations using only the spatial and wavelength degrees of freedom. We demonstrate this by performing a synchronous convolution of 100 clinical electrocardiogram signals from patients with cardiovascular diseases, and constructing a convolutional neural network capable of identifying patients at sudden death risk with 93.5% accuracy.
DOI:doi:10.1038/s41566-023-01313-x
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41566-023-01313-x
 kostenfrei: Volltext: https://www.nature.com/articles/s41566-023-01313-x
 DOI: https://doi.org/10.1038/s41566-023-01313-x
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Applied optics
 Nanophotonics and plasmonics
K10plus-PPN:1880077647
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69178051   QR-Code
zum Seitenanfang