Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tremmel, Roman [VerfasserIn]   i
 Pirmann, Sebastian [VerfasserIn]   i
 Zhou, Yitian [VerfasserIn]   i
 Lauschke, Volker Martin [VerfasserIn]   i
Titel:Translating pharmacogenomic sequencing data into drug response predictions
Titelzusatz:how to interpret variants of unknown significance
Verf.angabe:Roman Tremmel, Sebastian Pirmann, Yitian Zhou, Volker M. Lauschke
E-Jahr:2023
Jahr:27 September 2023
Umfang:12 S.
Fussnoten:Erstveröffentlichung: 27. September 2023 ; Gesehen am 14.02.2024
Titel Quelle:Enthalten in: British journal of clinical pharmacology
Ort Quelle:Oxford : Wiley-Blackwell, 1974
Jahr Quelle:2023
Band/Heft Quelle:(2023), early view, Seite 1-12
ISSN Quelle:1365-2125
Abstract:The rapid development of sequencing technologies during the past 20 years has provided a variety of methods and tools to interrogate human genomic variations at the population level. Pharmacogenes are well known to be highly polymorphic and a plethora of pharmacogenomic variants has been identified in population sequencing data. However, so far only a small number of these variants have been functionally characterized regarding their impact on drug efficacy and toxicity and the significance of the vast majority remains unknown. It is therefore of high importance to develop tools and frameworks to accurately infer the effects of pharmacogenomic variants and, eventually, aggregate the effect of individual variations into personalized drug response predictions. To address this challenge, we here first describe the technological advances, including sequencing methods and accompanying bioinformatic processing pipelines that have enabled reliable variant identification. Subsequently, we highlight advances in computational algorithms for pharmacogenomic variant interpretation and discuss the added value of emerging strategies, such as machine learning and the integrative use of omics techniques that have the potential to further contribute to the refinement of personalized pharmacological response predictions. Lastly, we provide an overview of experimental and clinical approaches to validate in silico predictions. We conclude that the iterative feedback between computational predictions and experimental validations is likely to rapidly improve the accuracy of pharmacogenomic prediction models, which might soon allow for an incorporation of the entire pharmacogenetic profile into personalized response predictions.
DOI:doi:10.1111/bcp.15915
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1111/bcp.15915
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/bcp.15915
 DOI: https://doi.org/10.1111/bcp.15915
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 electronic health records
 population-scale sequencing
 precision medicine
 variant effect predictions
K10plus-PPN:1880723999
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69182073   QR-Code
zum Seitenanfang