| Online-Ressource |
Verfasst von: | Schwegler, Niklas [VerfasserIn]  |
| Gebert, Tanisha [VerfasserIn]  |
| Villiou, Maria [VerfasserIn]  |
| Colombo, Federico [VerfasserIn]  |
| Schamberger, Barbara [VerfasserIn]  |
| Selhuber-Unkel, Christine [VerfasserIn]  |
| Thomas, Franziska [VerfasserIn]  |
| Blasco, Eva [VerfasserIn]  |
Titel: | Multimaterial 3D laser printing of cell-adhesive and cell-repellent hydrogels [data] |
Verf.angabe: | Niklas Schwegler, Tanisha Gebert, Maria Villiou, Federico Colombo, Barbara Schamberger, Christine Selhuber-Unkel, Franziska Thomas, Eva Blasco |
Verlagsort: | Heidelberg |
Verlag: | Universität |
E-Jahr: | 2024 |
Jahr: | 2024-02-16 |
Umfang: | 1 Online-Ressource (2 Files) |
Fussnoten: | Finanziert durch: Spotlight Project “Synthetic Immunology” of the Flagship Initiative Engineering Molecular Systems (FI EMS; funded by the BMBF and the Ministry of Science Baden-Württemberg); Excellence Cluster “3D Matter Made to Order” (funded by the DFG): EXC 2082/1 390761711; ERC Consolidator Grant PHOTOMECH: Grant no. 101001797; Volkswagen Foundation Initiative “Life?,”: Az. 96733 ; Gesehen am 21.02.2024 |
Abstract: | This study introduces a straightforward method for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability and rapid and precise 3D fabrication. The printable cell-adhesive PEG-based material includes an RGD-containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of our system, we showcase the fabrication of cell-adhesive 2.5D and 3D structures, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments. |
DOI: | doi:10.11588/data/V2XXS8 |
URL: | kostenfrei: Volltext: https://doi.org/10.11588/data/V2XXS8 |
| kostenfrei: Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/V2XXS8 |
| DOI: https://doi.org/10.11588/data/V2XXS8 |
Datenträger: | Online-Ressource |
Dokumenttyp: | Forschungsdaten |
| Datenbank |
Sprache: | eng |
Bibliogr. Hinweis: | Forschungsdaten zu: Schwegler, Niklas, 1998 - : Multimaterial 3D laser printing of cell-adhesive and cell-repellent hydrogels |
Sonstige Nr.: | Grant number: DFG EXC 2082/1 390761711 |
| Grant number: ERC Consolidator Grant PHOTOMECH 101001797 |
| Grant number: Volkswagen Foundation Initiative “Life?” 96733 |
Sach-SW: | Chemistry |
K10plus-PPN: | 1881329143 |
|
|
| |
Lokale URL UB: | Zum Volltext |
Multimaterial 3D laser printing of cell-adhesive and cell-repellent hydrogels [data] / Schwegler, Niklas [VerfasserIn]; 2024-02-16 (Online-Ressource)