Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Vallejo Orti, Miguel [VerfasserIn]   i
 Castillo, Carlos [VerfasserIn]   i
 Zahs, Vivien [VerfasserIn]   i
 Bubenzer, Olaf [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
Titel:Classifying types of gully changes with unoccupied aircraft vehicles 3D multitemporal point clouds for training of satellite data analysis in Northwest Namibia
Verf.angabe:Miguel Vallejo, Carlos Castillo, Vivien Zahs, Olaf Bubenzer, Bernhard Höfle
E-Jahr:2024
Jahr:15 March 2024
Umfang:21 S.
Illustrationen:Illustrationen
Fussnoten:Zuerst veröffentlicht: 11. Januar 2024 ; Gesehen am 28.02.2024
Titel Quelle:Enthalten in: Earth surface processes and landforms
Ort Quelle:New York, NY [u.a.] : Wiley, 1976
Jahr Quelle:2024
Band/Heft Quelle:49(2024), 3 vom: März, Seite 1135-1155
ISSN Quelle:1096-9837
Abstract:The development of standardised data acquisition strategies and analytical workflows is crucial to quantify gully changes. In this study, we explore synergies between unoccupied aircraft vehicles (UAV) and satellite remote sensing in order to classify gully morphodynamics. Using Time Series Forest (TSF) and the Sentinel-1 radar backscatter coefficient (σo), gully scenarios can be classified into four categories: gully topographical change, no change outside gully, no change inside gully, and non-topographical change. In addition, a Random Forest (RF) classification is performed employing individual features obtained from elevation models and temporally aggregated datasets. Training data are generated from multitemporal UAV-borne photogrammetric point clouds through a manual segmentation of different gullies in Namibia. This information is transferred from point clouds (sub-m) to satellite imagery (10 m) generating training data at Sentinel-1 pixel level. Results indicate that the TSF (on the σo Vertical-Vertical polarisation) and RF (on temporally aggregated features) perform best when training and testing areas are located within the same geographical extent. Both approaches yield similar Total Accuracy (TA ≈ 79%-80%) and Cohen's Kappa value (Kappa ≈ 0.7), but TSF achieves superior Producer Accuracy (PA = 78.5%) and User Accuracy (UA = 84.6%) for the gully topographical change class. Additionally, the utilisation of TSF in Vertical-Vertical polarisation is the most effective method if the testing and training areas are in different geographical locations, allowing gully identification with TA > 80% and Kappa = 0.49. However, this method presents limitations to precisely delineate the change types, as dynamics are rain-driven and therefore are geographically related. In summary, by combining the complementary benefits of UAV-based and satellite-based solutions, this study opens a line of research for the study and classification of surface land dynamics and geomorphological feature extraction in regional extents.
DOI:doi:10.1002/esp.5759
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/esp.5759
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.5759
 DOI: https://doi.org/10.1002/esp.5759
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten: Vallejo Orti, Miguel, 1983 - : Classification of types of changes in gully environments using time series forest algorithm [data]
Sach-SW:change detection
 gully monitoring
 machine learning
 Namibia
 radar time series
 spatial aggregation
 spatial classification
K10plus-PPN:1882047575
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69186792   QR-Code
zum Seitenanfang