Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ramon, Aubin [VerfasserIn]   i
 Ali, Montader [VerfasserIn]   i
 Atkinson, Misha [VerfasserIn]   i
 Saturnino, Alessio [VerfasserIn]   i
 Didi, Kieran [VerfasserIn]   i
 Visentin, Cristina [VerfasserIn]   i
 Ricagno, Stefano [VerfasserIn]   i
 Xu, Xing [VerfasserIn]   i
 Greenig, Matthew [VerfasserIn]   i
 Sormanni, Pietro [VerfasserIn]   i
Titel:Assessing antibody and nanobody nativeness for hit selection and humanization with AbNatiV
Verf.angabe:Aubin Ramon, Montader Ali, Misha Atkinson, Alessio Saturnino, Kieran Didi, Cristina Visentin, Stefano Ricagno, Xing Xu, Matthew Greenig & Pietro Sormanni
E-Jahr:2024
Jahr:15 January 2024
Umfang:18 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 15.03.2024
Titel Quelle:Enthalten in: Nature machine intelligence
Ort Quelle:[London] : Springer Nature Publishing, 2019
Jahr Quelle:2024
Band/Heft Quelle:6(2024), 1, Seite 74-91
ISSN Quelle:2522-5839
Abstract:Monoclonal antibodies have emerged as key therapeutics. In particular, nanobodies, small, single-domain antibodies that are naturally expressed in camelids, are rapidly gaining momentum following the approval of the first nanobody drug in 2019. Nonetheless, the development of these biologics as therapeutics remains a challenge. Despite the availability of established in vitro directed-evolution technologies that are relatively fast and cheap to deploy, the gold standard for generating therapeutic antibodies remains discovery from animal immunization or patients. Immune-system-derived antibodies tend to have favourable properties in vivo, including long half-life, low reactivity with self-antigens and low toxicity. Here we present AbNatiV, a deep learning tool for assessing the nativeness of antibodies and nanobodies, that is, their likelihood of belonging to the distribution of immune-system-derived human antibodies or camelid nanobodies. AbNatiV is a multipurpose tool that accurately predicts the nativeness of Fv sequences from any source, including synthetic libraries and computational design. It provides an interpretable score that predicts the likelihood of immunogenicity, and a residue-level profile that can guide the engineering of antibodies and nanobodies indistinguishable from immune-system-derived ones. We further introduce an automated humanization pipeline, which we applied to two nanobodies. Laboratory experiments show that AbNatiV-humanized nanobodies retain binding and stability at par or better than their wild type, unlike nanobodies that are humanized using conventional structural and residue-frequency analysis. We make AbNatiV available as downloadable software and as a webserver.
DOI:doi:10.1038/s42256-023-00778-3
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s42256-023-00778-3
 kostenfrei: Volltext: https://www.nature.com/articles/s42256-023-00778-3
 DOI: https://doi.org/10.1038/s42256-023-00778-3
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Drug development
 Machine learning
 Protein design
K10plus-PPN:1883486513
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69192242   QR-Code
zum Seitenanfang