Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tharmaseelan, Hishan [VerfasserIn]   i
 Hertel, Alexander [VerfasserIn]   i
 Tollens, Fabian [VerfasserIn]   i
 Rink, Johann [VerfasserIn]   i
 Woźnicki, Piotr [VerfasserIn]   i
 Haselmann, Verena [VerfasserIn]   i
 Ayx, Isabelle [VerfasserIn]   i
 Nörenberg, Dominik [VerfasserIn]   i
 Schönberg, Stefan [VerfasserIn]   i
 Froelich, Matthias F. [VerfasserIn]   i
Titel:Identification of CT imaging phenotypes of colorectal liver metastases from radiomics signatures
Titelzusatz:towards assessment of interlesional tumor heterogeneity
Verf.angabe:Hishan Tharmaseelan, Alexander Hertel, Fabian Tollens, Johann Rink, Piotr Woźnicki, Verena Haselmann, Isabelle Ayx, Dominik Nörenberg, Stefan O. Schoenberg and Matthias F. Froelich
E-Jahr:2022
Jahr:24 March 2022
Umfang:13 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 26.03.2024
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2022
Band/Heft Quelle:14(2022), 7, Artikel-ID 1646, Seite 1-13
ISSN Quelle:2072-6694
Abstract:(1) Background: Tumoral heterogeneity (TH) is a major challenge in the treatment of metastatic colorectal cancer (mCRC) and is associated with inferior response. Therefore, the identification of TH would be beneficial for treatment planning. TH can be assessed by identifying genetic alterations. In this work, a radiomics-based approach for assessment of TH in colorectal liver metastases (CRLM) in CT scans is demonstrated. (2) Methods: In this retrospective study, CRLM of mCRC were segmented and radiomics features extracted using pyradiomics. Unsupervised k-means clustering was applied to features and lesions. Feature redundancy was evaluated by principal component analysis and reduced by Pearson correlation coefficient cutoff. Feature selection was conducted by LASSO regression and visual analysis of the clusters by radiologists. (3) Results: A total of 47 patients’ (36% female, median age 64) CTs with 261 lesions were included. Five clusters were identified, and the categories small disseminated (n = 31), heterogeneous (n = 105), homogeneous (n = 64), mixed (n = 59), and very large type (n = 2) were assigned based on visual characteristics. Further statistical analysis showed correlation (p < 0.01) of clusters with sex, primary location, T- and N-status, and mutational status. Feature reduction and selection resulted in the identification of four features as a final set for cluster definition. (4) Conclusions: Radiomics features can characterize TH in liver metastases of mCRC in CT scans, and may be suitable for a better pretherapeutic classification of liver lesion phenotypes.
DOI:doi:10.3390/cancers14071646
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/cancers14071646
 kostenfrei: Volltext: https://www.mdpi.com/2072-6694/14/7/1646
 DOI: https://doi.org/10.3390/cancers14071646
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:colorectal cancer
 computed tomography
 liver metastases
 metastasis
 radiomics
K10plus-PPN:1884322972
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69195202   QR-Code
zum Seitenanfang