Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Köber, Göran [VerfasserIn]   i
 Kalisch, Raffael [VerfasserIn]   i
 Puhlmann, Lara M.C. [VerfasserIn]   i
 Chmitorz, Andrea [VerfasserIn]   i
 Schick, Anita [VerfasserIn]   i
 Binder, Harald [VerfasserIn]   i
Titel:Deep learning and differential equations for modeling changes in individual-level latent dynamics between observation periods
Titelzusatz:research article
Verf.angabe:Göran Köber, Raffael Kalisch, Lara M.C. Puhlmann, Andrea Chmitorz, Anita Schick, Harald Binder
E-Jahr:2023
Jahr:August 2023
Umfang:15 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 17. März 2023 ; Gesehen am 02.04.2024
Titel Quelle:Enthalten in: Biometrical journal
Ort Quelle:Berlin : Wiley-VCH, 1977
Jahr Quelle:2023
Band/Heft Quelle:65(2023), 6 vom: Aug., Seite 1-15
ISSN Quelle:1521-4036
Abstract:When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic modeling in the resulting latent representation is needed. This can be achieved by artificial neural networks for dimension reduction and differential equations for dynamic modeling of individual-level trajectories. However, such approaches so far assume that parameters of individual-level dynamics are constant throughout the observation period. Motivated by an application from psychological resilience research, we propose an extension where different sets of differential equation parameters are allowed for observation subperiods. Still, estimation for intra-individual subperiods is coupled for being able to fit the model also with a relatively small dataset. We subsequently derive prediction targets from individual dynamic models of resilience in the application. These serve as outcomes for predicting resilience from characteristics of individuals, measured at baseline and a follow-up time point, and selecting a small set of important predictors. Our approach is seen to successfully identify individual-level parameters of dynamic models that allow to stably select predictors, that is, resilience factors. Furthermore, we can identify those characteristics of individuals that are the most promising for updates at follow-up, which might inform future study design. This underlines the usefulness of our proposed deep dynamic modeling approach with changes in parameters between observation subperiods.
DOI:doi:10.1002/bimj.202100381
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/bimj.202100381
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202100381
 DOI: https://doi.org/10.1002/bimj.202100381
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:deep learning
 dynamic modeling
 longitudinal data
 observational data
 variable selection
K10plus-PPN:1884709796
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69196459   QR-Code
zum Seitenanfang