Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Martin, Osvaldo [VerfasserIn]   i
Titel:Bayesian analysis with Python
Titelzusatz:a practical guide to probabilistic modeling
Mitwirkende:Fonnesbeck, Christopher [MitwirkendeR]   i
 Wiecki, Thomas [MitwirkendeR]   i
Verf.angabe:Osvaldo Martin ; foreword by Christopher Fonnesbeck, Thomas Wiecki
Ausgabe:Third Edition.
Verlagsort:Birmingham
Verlag:Packt Publishing
E-Jahr:2024
Jahr:[2024]
Umfang:1 online resource.
Gesamttitel/Reihe:Expert insight
Fussnoten:Includes bibliographical references and index. - Online resource; title from PDF title page (EBSCO, viewed February 29, 2024)
ISBN:978-1-80512-541-9
 1-80512-541-9
 978-1-80512-716-1
Abstract:Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these libraries Key Features Conduct Bayesian data analysis with step-by-step guidance Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling Enhance your learning with best practices through sample problems and practice exercises Purchase of the print or Kindle book includes a free PDF eBook. Book DescriptionThe third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection. In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets. By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises. What you will learn Build probabilistic models using PyMC and Bambi Analyze and interpret probabilistic models with ArviZ Acquire the skills to sanity-check models and modify them if necessary Build better models with prior and posterior predictive checks Learn the advantages and caveats of hierarchical models Compare models and choose between alternative ones Interpret results and apply your knowledge to real-world problems Explore common models from a unified probabilistic perspective Apply the Bayesian framework's flexibility for probabilistic thinking Who this book is for If you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781805127161/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Python (Langage de programmation)
 Traitement automatique des langues naturelles
 Théorie de la décision bayésienne
K10plus-PPN:188500754X
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4507218160
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69197390   QR-Code
zum Seitenanfang