Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kociurzynski, Raisa [VerfasserIn]   i
 D’Ambrosio, Angelo [VerfasserIn]   i
 Papathanassopoulos, Alexis [VerfasserIn]   i
 Bürkin, Fabian [VerfasserIn]   i
 Hertweck, Stephan [VerfasserIn]   i
 Eichel, Vanessa [VerfasserIn]   i
 Heininger, Alexandra [VerfasserIn]   i
 Liese, Jan [VerfasserIn]   i
 Mutters, Nico T. [VerfasserIn]   i
 Peter, Silke [VerfasserIn]   i
 Wismath, Nina [VerfasserIn]   i
 Wolf, Sophia [VerfasserIn]   i
 Grundmann, Hajo [VerfasserIn]   i
 Donker, Tjibbe [VerfasserIn]   i
Titel:Forecasting local hospital bed demand for COVID-19 using on-request simulations
Verf.angabe:Raisa Kociurzynski, Angelo D’Ambrosio, Alexis Papathanassopoulos, Fabian Bürkin, Stephan Hertweck, Vanessa M. Eichel, Alexandra Heininger, Jan Liese, Nico T. Mutters, Silke Peter, Nina Wismath, Sophia Wolf, Hajo Grundmann & Tjibbe Donker
E-Jahr:2023
Jahr:03 December 2023
Umfang:15 S.
Fussnoten:Gesehen am 11.04.2024
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Springer Nature, 2011
Jahr Quelle:2023
Band/Heft Quelle:13(2023) vom: Dez., Seite 1-15
ISSN Quelle:2045-2322
Abstract:Accurate forecasting of hospital bed demand is crucial during infectious disease epidemics to avoid overwhelming healthcare facilities. To address this, we developed an intuitive online tool for individual hospitals to forecast COVID-19 bed demand. The tool utilizes local data, including incidence, vaccination, and bed occupancy data, at customizable geographical resolutions. Users can specify their hospital’s catchment area and adjust the initial number of COVID-19 occupied beds. We assessed the model’s performance by forecasting ICU bed occupancy for several university hospitals and regions in Germany. The model achieves optimal results when the selected catchment area aligns with the hospital’s local catchment. While expanding the catchment area reduces accuracy, it improves precision. However, forecasting performance diminishes during epidemic turning points. Incorporating variants of concern slightly decreases precision around turning points but does not significantly impact overall bed occupancy results. Our study highlights the significance of using local data for epidemic forecasts. Forecasts based on the hospital’s specific catchment area outperform those relying on national or state-level data, striking a better balance between accuracy and precision. These hospital-specific bed demand forecasts offer valuable insights for hospital planning, such as adjusting elective surgeries to create additional bed capacity promptly.
DOI:doi:10.1038/s41598-023-48601-8
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41598-023-48601-8
 kostenfrei: Volltext: https://www.nature.com/articles/s41598-023-48601-8
 DOI: https://doi.org/10.1038/s41598-023-48601-8
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational models
 Computational platforms and environments
 Computer modelling
 Epidemiology
 Infectious diseases
 Population dynamics
 Statistical methods
 Stochastic modelling
 Time series
 Vaccines
 Viral infection
K10plus-PPN:1885644078
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69199848   QR-Code
zum Seitenanfang