Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rutzinger, Martin [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
 Hollaus, Markus [VerfasserIn]   i
 Pfeifer, Norbert [VerfasserIn]   i
Titel:Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification
Verf.angabe:Martin Rutzinger, Bernhard Höfle, Markus Hollaus, Norbert Pfeifer
E-Jahr:2008
Jahr:4 August 2008
Umfang:24 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 15.04.2024
Titel Quelle:Enthalten in: Sensors
Ort Quelle:Basel : MDPI, 2001
Jahr Quelle:2008
Band/Heft Quelle:8(2008), 8 vom: Aug., Seite 4505-4528
ISSN Quelle:1424-8220
Abstract:Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation.
DOI:doi:10.3390/s8084505
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/s8084505
 Volltext: https://www.mdpi.com/1424-8220/8/8/4505
 DOI: https://doi.org/10.3390/s8084505
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3D feature calculation
 Airborne laser scanning.
 Classification
 Error assessment
 Full-waveform
 Object-based point cloud analysis
 Segmentation
 Urban vegetation
K10plus-PPN:1885859007
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69204411   QR-Code
zum Seitenanfang