Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hulskemper, Daan [VerfasserIn]   i
 Anders, Katharina [VerfasserIn]   i
 Antolínez, José A. Á. [VerfasserIn]   i
 Kuschnerus, Mieke [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
 Lindenbergh, Roderik [VerfasserIn]   i
Titel:Characteriation of morphological surface activities derived from near-continuous terrestrial LIDAR time series
Verf.angabe:Daan Hulskemper, Katharina Anders, José A.Á. Antolínez, Mieke Kuschnerus, Bernhard Höfle, Roderik Lindenbergh
Jahr:2022
Umfang:8 S.
Fussnoten:Gesehen am 15.04.2024
Titel Quelle:Enthalten in: Optical 3D Metrology (Veranstaltung : 2022 : Würzburg)Optical 3D Metrology (O3DM)
Ort Quelle:Hannover : ISPRS, 2022
Jahr Quelle:2022
Band/Heft Quelle:XLVIII-2-W2-2022(2022), Seite 53-60
Abstract:The Earth’s landscapes are shaped by processes eroding, transporting and depositing material over various timespans and spatial scales. To understand these surface activities and mitigate potential hazards they inflict (e.g., the landward movement of a shoreline), knowledge is needed on the occurrences and impact of these activities. Near-continuous terrestrial laser scanning enables the acquisition of large datasets of surface morphology, represented as three-dimensional point cloud time series. Exploiting the full potential of this large amount of data, by extracting and characterizing different types of surface activities, is challenging. In this research we use a time series of 2,942 point clouds obtained over a sandy beach in The Netherlands. We investigate automated methods to extract individual surface activities present in this dataset and cluster them into groups to characterize different types of surface activities. We show that, first extracting 2,021 spatiotemporal segments of surface activity using an object detection algorithm, and second, clustering these segments with a Self-organizing Map (SOM) in combination with hierarchical clustering, allows for the unsupervised identification and characterization of different types of surface activities present on a sandy beach. The SOM enables us to find events displaying certain type of surface activity, while it also enables the identification of subtle differences between different events belonging to one specific surface activity. Hierarchical clustering then allows us to find and characterize broader groups of surface activity, even if the same type of activity occurs at different points in space or time.
DOI:doi:10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
 kostenfrei: Volltext: https://isprs-archives.copernicus.org/articles/XLVIII-2-W2-2022/53/2022/
 DOI: https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:4D objects-by-change
 Coastal monitoring
 Self-organizing Map
 Surface Activity
 Terrestrial laser scanning
K10plus-PPN:188586308X
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69204425   QR-Code
zum Seitenanfang