Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mandlburger, Gottfried [VerfasserIn]   i
 Hauer, C. [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
 Habersack, H. [VerfasserIn]   i
 Pfeifer, N. [VerfasserIn]   i
Titel:Optimisation of LiDAR derived terrain models for river flow modelling
Verf.angabe:G. Mandlburger, C. Hauer, B. Höfle, H. Habersack, and N. Pfeifer
Jahr:2009
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Published: 14 August 2009 ; Gesehen am 17.04.2024
Titel Quelle:Enthalten in: Hydrology and earth system sciences
Ort Quelle:Munich : EGU, 1997
Jahr Quelle:2009
Band/Heft Quelle:13(2009), 8, Seite 1453-1466
ISSN Quelle:1607-7938
Abstract:Airborne LiDAR (Light Detection And Ranging) combines cost efficiency, high degree of automation, high point density of typically 1-10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM) as geometric basis for hydrodynamic-numerical (HN) simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain points have to be filtered and merged with river bed data, e.g. from echo sounding. Then, a smooth Digital Terrain Model of the Watercourse (DTM-W) needs to be derived, preferably considering the random measurement error during surface interpolation. In a subsequent step, a hydraulic computation mesh has to be constructed. Hydraulic simulation software is often restricted to a limited number of nodes and elements, thus, data reduction and data conditioning of the high resolution LiDAR DTM-W becomes necessary. We will present a DTM thinning approach based on adaptive TIN refinement which allows a very effective compression of the point data (more than 95% in flood plains and up to 90% in steep areas) while preserving the most relevant topographic features (height tolerance ±20 cm). Traditional hydraulic mesh generators focus primarily on physical aspects of the computation grid like aspect ratio, expansion ratio and angle criterion. They often neglect the detailed shape of the topography as provided by LiDAR data. In contrast, our approach considers both the high geometric resolution of the LiDAR data and additional mesh quality parameters. It will be shown that the modelling results (flood extents, flow velocities, etc.) can vary remarkably by the availability of surface details. Thus, the inclusion of such geometric details in the hydraulic computation meshes is gaining importance in river flow modelling.
DOI:doi:10.5194/hess-13-1453-2009
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.5194/hess-13-1453-2009
 Volltext: https://hess.copernicus.org/articles/13/1453/2009/
 DOI: https://doi.org/10.5194/hess-13-1453-2009
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:188605858X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69205154   QR-Code
zum Seitenanfang