Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jiang, Xiaofeng [VerfasserIn]   i
 Hoffmeister, Michael [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Muti, Hannah Sophie [VerfasserIn]   i
 Yuan, Tanwei [VerfasserIn]   i
 Foersch, Sebastian [VerfasserIn]   i
 West, Nicholas P [VerfasserIn]   i
 Brobeil, Alexander [VerfasserIn]   i
 Jonnagaddala, Jitendra [VerfasserIn]   i
 Hawkins, Nicholas [VerfasserIn]   i
 Ward, Robyn L [VerfasserIn]   i
 Brinker, Titus Josef [VerfasserIn]   i
 Saldanha, Oliver Lester [VerfasserIn]   i
 Ke, Jia [VerfasserIn]   i
 Müller, Wolfram [VerfasserIn]   i
 Grabsch, Heike I [VerfasserIn]   i
 Quirke, Philip [VerfasserIn]   i
 Truhn, Daniel [VerfasserIn]   i
 Kather, Jakob Nikolas [VerfasserIn]   i
Titel:End-to-end prognostication in colorectal cancer by deep learning
Titelzusatz:a retrospective, multicentre study
Verf.angabe:Xiaofeng Jiang, Michael Hoffmeister, Hermann Brenner, Hannah Sophie Muti, Tanwei Yuan, Sebastian Foersch, Nicholas P West, Alexander Brobeil, Jitendra Jonnagaddala, Nicholas Hawkins, Robyn L Ward, Titus J Brinker, Oliver Lester Saldanha, Jia Ke, Wolfram Müller, Heike I Grabsch, Philip Quirke, Daniel Truhn, Jakob Nikolas Kather
E-Jahr:2024
Jahr:January 2024
Umfang:11 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 18. Dezember 2023 ; Gesehen am 14.05.2024
Titel Quelle:Enthalten in: The lancet. Digital health
Ort Quelle:London : The Lancet, 2019
Jahr Quelle:2024
Band/Heft Quelle:6(2024), 1 vom: Jan., Seite e33-e43
ISSN Quelle:2589-7500
Abstract:Background - Precise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for individualised treatment and care. Histopathological tissue slides of colorectal cancer specimens contain rich prognostically relevant information. However, existing studies do not have multicentre external validation with real-world sample processing protocols, and algorithms are not yet widely used in clinical routine. - Methods - In this retrospective, multicentre study, we collected tissue samples from four groups of patients with resected colorectal cancer from Australia, Germany, and the USA. We developed and externally validated a deep learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in patients with resected colorectal cancer. We used the model-predicted risk scores to stratify patients into different risk groups and compared survival outcomes between these groups. Additionally, we evaluated the prognostic value of these risk groups after adjusting for established prognostic variables. - Findings - We trained and validated our model on a total of 4428 patients. We found that patients could be divided into high-risk and low-risk groups on the basis of the deep learning-based risk score. On the internal test set, the group with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) of 4·50 (95% CI 3·33-6·09) for overall survival and 8·35 (5·06-13·78) for disease-specific survival (DSS). We found consistent performance across three large external test sets. In a test set of 1395 patients, the high-risk group had a lower DSS than the low-risk group, with an HR of 3·08 (2·44-3·89). In two additional test sets, the HRs for DSS were 2·23 (1·23-4·04) and 3·07 (1·78-5·3). We showed that the prognostic value of the deep learning-based risk score is independent of established clinical risk factors. - Interpretation - Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a potentially new prognostic tool in clinical decision making for colorectal cancer management. We release all source codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our work. - Funding - The German Federal Ministry of Health, the Max-Eder-Programme of German Cancer Aid, the German Federal Ministry of Education and Research, the German Academic Exchange Service, and the EU.
DOI:doi:10.1016/S2589-7500(23)00208-X
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/S2589-7500(23)00208-X
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S258975002300208X
 DOI: https://doi.org/10.1016/S2589-7500(23)00208-X
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1888490519
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69213504   QR-Code
zum Seitenanfang