Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Trujillo-Gomez, Sebastian [VerfasserIn]   i
 Kruijssen, J M Diederik [VerfasserIn]   i
 Pfeffer, Joel [VerfasserIn]   i
 Reina-Campos, Marta [VerfasserIn]   i
 Crain, Robert A [VerfasserIn]   i
 Bastian, Nate [VerfasserIn]   i
 Cabrera-Ziri, Ivan [VerfasserIn]   i
Titel:In situ or accreted?
Titelzusatz:Using deep learning to infer the origin of extragalactic globular clusters from observables
Verf.angabe:Sebastian Trujillo-Gomez, J.M. Diederik Kruijssen, Joel Pfeffer, Marta Reina-Campos, Robert A. Crain, Nate Bastian and Ivan Cabrera-Ziri
E-Jahr:2023
Jahr:December 2023
Umfang:21 S.
Illustrationen:Illustrationen
Fussnoten:Veröffentlicht: 14 October 2023 ; Gesehen am 17.05.2024
Titel Quelle:Enthalten in: Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society
Ort Quelle:Oxford : Oxford Univ. Press, 1827
Jahr Quelle:2023
Band/Heft Quelle:526(2023), 4 vom: Dez., Seite 5735-5755
ISSN Quelle:1365-2966
Abstract:Globular clusters (GCs) are powerful tracers of the galaxy assembly process, and have already been used to obtain a detailed picture of the progenitors of the Milky Way (MW). Using the E-MOSAICS cosmological simulation of a (34.4 Mpc)3 volume that follows the formation and co-evolution of galaxies and their star cluster populations, we develop a method to link the origin of GCs to their observable properties. We capture this complex link using a supervised deep learning algorithm trained on the simulations, and predict the origin of individual GCs (whether they formed in the main progenitor or were accreted from satellites) based solely on extragalactic observables. An artificial neural network classifier trained on ∼50 000 GCs hosted by ∼700 simulated galaxies successfully predicts the origin of GCs in the test set with a mean accuracy of 89 per cent for the objects with [Fe/H] < −0.5 that have unambiguous classifications. The network relies mostly on the alpha-element abundances, metallicities, projected positions, and projected angular momenta of the clusters to predict their origin. A real-world test using the known progenitor associations of the MW GCs achieves up to 90 per cent accuracy, and successfully identifies as accreted most of the GCs in the inner Galaxy associated to the Kraken progenitor, as well as all the Gaia-Enceladus GCs. We demonstrate that the model is robust to observational uncertainties, and develop a method to predict the classification accuracy across observed galaxies. The classifier can be optimized for available observables (e.g. to improve the accuracy by including GC ages), making it a valuable tool to reconstruct the assembly histories of galaxies in upcoming wide-field surveys.
DOI:doi:10.1093/mnras/stad3165
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/mnras/stad3165
 DOI: https://doi.org/10.1093/mnras/stad3165
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1889472212
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69216552   QR-Code
zum Seitenanfang