Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Starke, Sebastian [VerfasserIn]   i
 Zwanenburg, Alex [VerfasserIn]   i
 Leger, Karoline [VerfasserIn]   i
 Lohaus, Fabian [VerfasserIn]   i
 Linge, Annett [VerfasserIn]   i
 Kalinauskaite, Goda [VerfasserIn]   i
 Tinhofer, Inge [VerfasserIn]   i
 Guberina, Nika [VerfasserIn]   i
 Guberina, Maja [VerfasserIn]   i
 Balermpas, Panagiotis [VerfasserIn]   i
 Grün, Jens von der [VerfasserIn]   i
 Ganswindt, Ute [VerfasserIn]   i
 Belka, Claus [VerfasserIn]   i
 Peeken, Jan C. [VerfasserIn]   i
 Combs, Stephanie E. [VerfasserIn]   i
 Boeke, Simon [VerfasserIn]   i
 Zips, Daniel [VerfasserIn]   i
 Richter, Christian [VerfasserIn]   i
 Troost, Esther G. C. [VerfasserIn]   i
 Krause, Mechthild [VerfasserIn]   i
 Baumann, Michael [VerfasserIn]   i
 Löck, Steffen [VerfasserIn]   i
Titel:Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients
Verf.angabe:Sebastian Starke, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Esther G.C. Troost, Mechthild Krause, Michael Baumann and Steffen Löck
E-Jahr:2023
Jahr:9 October 2023
Umfang:21 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 24.05.2024
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2023
Band/Heft Quelle:15(2023), 19, Artikel-ID p4897, Seite 1-21
ISSN Quelle:2072-6694
Abstract:Neural-network-based outcome predictions may enable further treatment personalization of patients with head and neck cancer. The development of neural networks can prove challenging when a limited number of cases is available. Therefore, we investigated whether multitask learning strategies, implemented through the simultaneous optimization of two distinct outcome objectives (multi-outcome) and combined with a tumor segmentation task, can lead to improved performance of convolutional neural networks (CNNs) and vision transformers (ViTs). Model training was conducted on two distinct multicenter datasets for the endpoints loco-regional control (LRC) and progression-free survival (PFS), respectively. The first dataset consisted of pre-treatment computed tomography (CT) imaging for 290 patients and the second dataset contained combined positron emission tomography (PET)/CT data of 224 patients. Discriminative performance was assessed by the concordance index (C-index). Risk stratification was evaluated using log-rank tests. Across both datasets, CNN and ViT model ensembles achieved similar results. Multitask approaches showed favorable performance in most investigations. Multi-outcome CNN models trained with segmentation loss were identified as the optimal strategy across cohorts. On the PET/CT dataset, an ensemble of multi-outcome CNNs trained with segmentation loss achieved the best discrimination (C-index: 0.29, 95% confidence interval (CI): 0.22-0.36) and successfully stratified patients into groups with low and high risk of disease progression (p=0.003). On the CT dataset, ensembles of multi-outcome CNNs and of single-outcome ViTs trained with segmentation loss performed best (C-index: 0.26 and 0.26, CI: 0.18-0.34 and 0.18-0.35, respectively), both with significant risk stratification for LRC in independent validation (p=0.002 and p=0.011). Further validation of the developed multitask-learning models is planned based on a prospective validation study, which has recently completed recruitment.
DOI:doi:10.3390/cancers15194897
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/cancers15194897
 Volltext: https://www.mdpi.com/2072-6694/15/19/4897
 DOI: https://doi.org/10.3390/cancers15194897
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:convolutional neural network
 Cox proportional hazards
 discrete-time survival models
 head and neck cancer
 loco-regional control
 multitask learning
 progression-free survival
 survival analysis
 tumor segmentation
 vision transformer
K10plus-PPN:1889738956
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69217290   QR-Code
zum Seitenanfang