Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schweizer, Leonille [VerfasserIn]   i
 Seegerer, Philipp [VerfasserIn]   i
 Kim, Hee-yeong [VerfasserIn]   i
 Saitenmacher, René [VerfasserIn]   i
 Muench, Amos [VerfasserIn]   i
 Barnick, Liane [VerfasserIn]   i
 Osterloh, Anja [VerfasserIn]   i
 Dittmayer, Carsten [VerfasserIn]   i
 Jödicke, Ruben [VerfasserIn]   i
 Pehl, Debora [VerfasserIn]   i
 Reinhardt, Annekathrin [VerfasserIn]   i
 Ruprecht, Klemens [VerfasserIn]   i
 Stenzel, Werner [VerfasserIn]   i
 Wefers, Annika K. [VerfasserIn]   i
 Harter, Patrick N. [VerfasserIn]   i
 Schüller, Ulrich [VerfasserIn]   i
 Heppner, Frank L. [VerfasserIn]   i
 Alber, Maximilian [VerfasserIn]   i
 Müller, Klaus-Robert [VerfasserIn]   i
 Klauschen, Frederick [VerfasserIn]   i
Titel:Analysing cerebrospinal fluid with explainable deep learning
Titelzusatz:from diagnostics to insights
Verf.angabe:Leonille Schweizer, Philipp Seegerer, Hee-yeong Kim, René Saitenmacher, Amos Muench, Liane Barnick, Anja Osterloh, Carsten Dittmayer, Ruben Jödicke, Debora Pehl, Annekathrin Reinhardt, Klemens Ruprecht, Werner Stenzel, Annika K. Wefers, Patrick N. Harter, Ulrich Schüller, Frank L. Heppner, Maximilian Alber, Klaus-Robert Müller, Frederick Klauschen
E-Jahr:2023
Jahr:February 2023
Umfang:16 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 24.05.2024
Titel Quelle:Enthalten in: Neuropathology & applied neurobiology
Ort Quelle:Oxford [u.a.] : Wiley-Blackwell, 1975
Jahr Quelle:2023
Band/Heft Quelle:49(2023), 1 vom: Feb., Artikel-ID e12866, Seite 1-16
ISSN Quelle:1365-2990
Abstract:Aim Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. Methods We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). Results The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. Conclusions Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.
DOI:doi:10.1111/nan.12866
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1111/nan.12866
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/nan.12866
 DOI: https://doi.org/10.1111/nan.12866
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:cell detection
 cerebrospinal fluid
 deep learning
 explainable AI
 heatmaps
K10plus-PPN:1889742376
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69217296   QR-Code
zum Seitenanfang