Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Fink, Matthias A. [VerfasserIn]   i
 Bischoff, Arved [VerfasserIn]   i
 Fink, Christoph Andreas [VerfasserIn]   i
 Moll, Martin [VerfasserIn]   i
 Kroschke, Jonas [VerfasserIn]   i
 Dulz, Luca [VerfasserIn]   i
 Heußel, Claus Peter [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Weber, Tim [VerfasserIn]   i
Titel:Potential of ChatGPT and GPT-4 for data mining of free-text CT reports on lung cancer
Verf.angabe:Matthias A. Fink, MD, Arved Bischoff, MD, Christoph A. Fink, MD, Martin Moll, MD, Jonas Kroschke, MD, Luca Dulz, MSc, Claus Peter Heußel, MD, Hans-Ulrich Kauczor, MD, Tim F. Weber, MD
E-Jahr:2023
Jahr:September 2023
Umfang:9 S.
Illustrationen:Illustrationen
Fussnoten:Online veröffentlicht: 19. September 2023 ; Gesehen am 06.06.2024
Titel Quelle:Enthalten in: Radiology
Ort Quelle:Oak Brook, Ill. : Soc., 1923
Jahr Quelle:2023
Band/Heft Quelle:308(2023), 3 vom: Sept., Artikel-ID e231362, Seite 1-9
ISSN Quelle:1527-1315
Abstract:Background - - The latest large language models (LLMs) solve unseen problems via user-defined text prompts without the need for retraining, offering potentially more efficient information extraction from free-text medical records than manual annotation. - - Purpose - - To compare the performance of the LLMs ChatGPT and GPT-4 in data mining and labeling oncologic phenotypes from free-text CT reports on lung cancer by using user-defined prompts. - - Materials and Methods - - This retrospective study included patients who underwent lung cancer follow-up CT between September 2021 and March 2023. A subset of 25 reports was reserved for prompt engineering to instruct the LLMs in extracting lesion diameters, labeling metastatic disease, and assessing oncologic progression. This output was fed into a rule-based natural language processing pipeline to match ground truth annotations from four radiologists and derive performance metrics. The oncologic reasoning of LLMs was rated on a five-point Likert scale for factual correctness and accuracy. The occurrence of confabulations was recorded. Statistical analyses included Wilcoxon signed rank and McNemar tests. - - Results - - On 424 CT reports from 424 patients (mean age, 65 years ± 11 [SD]; 265 male), GPT-4 outperformed ChatGPT in extracting lesion parameters (98.6% vs 84.0%, P < .001), resulting in 96% correctly mined reports (vs 67% for ChatGPT, P < .001). GPT-4 achieved higher accuracy in identification of metastatic disease (98.1% [95% CI: 97.7, 98.5] vs 90.3% [95% CI: 89.4, 91.0]) and higher performance in generating correct labels for oncologic progression (F1 score, 0.96 [95% CI: 0.94, 0.98] vs 0.91 [95% CI: 0.89, 0.94]) (both P < .001). In oncologic reasoning, GPT-4 had higher Likert scale scores for factual correctness (4.3 vs 3.9) and accuracy (4.4 vs 3.3), with a lower rate of confabulation (1.7% vs 13.7%) than ChatGPT (all P < .001). - - Conclusion - - When using user-defined prompts, GPT-4 outperformed ChatGPT in extracting oncologic phenotypes from free-text CT reports on lung cancer and demonstrated better oncologic reasoning with fewer confabulations.
DOI:doi:10.1148/radiol.231362
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1148/radiol.231362
 Volltext: https://pubs.rsna.org/doi/10.1148/radiol.231362
 DOI: https://doi.org/10.1148/radiol.231362
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1890800619
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69221206   QR-Code
zum Seitenanfang