Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Farrelly, Colleen [VerfasserIn]   i
 Mutombo, Franck Kalala [VerfasserIn]   i
Titel:Modern Graph Theory Algorithms with Python
Titelzusatz:Harness the Power of Graph Algorithms and Real-World Network Applications Using Python
Mitwirkende:Giske, Michael [MitwirkendeR]   i
Verf.angabe:Colleen M. Farrely, Franck Kalala Mutombo ; foreword by Michael Giske
Ausgabe:1st edition.
Verlagsort:Birmingham
Verlag:Packt Publishing, Limited
Jahr:2024
Umfang:1 online resource (290 p.)
Fussnoten:Description based upon print version of record. - Friendship network introduction
ISBN:978-1-80512-017-9
 1-80512-017-4
Abstract:We are living in the age of big data, and scalable solutions are a necessity. Network science leverages the power of graph theory and flexible data structures to analyze big data at scale. This book guides you through the basics of network science, showing you how to wrangle different types of data (such as spatial and time series data) into network structures. You’ll be introduced to core tools from network science to analyze real-world case studies in Python. As you progress, you’ll find out how to predict fake news spread, track pricing patterns in local markets, forecast stock market crashes, and stop an epidemic spread. Later, you’ll learn about advanced techniques in network science, such as creating and querying graph databases, classifying datasets with graph neural networks (GNNs), and mining educational pathways for insights into student success. Case studies in the book will provide you with end-to-end examples of implementing what you learn in each chapter. By the end of this book, you’ll be well-equipped to wrangle your own datasets into network science problems and scale solutions with Python.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781805127895/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Python (Langage de programmation)
 Algorithmes
 algorithms
K10plus-PPN:1892759357
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m454443517X
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69227970   QR-Code
zum Seitenanfang