Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dominik, Carsten [VerfasserIn]   i
 Dullemond, Cornelis [VerfasserIn]   i
Titel:The bouncing barrier revisited
Titelzusatz:impact on key planet formation processes and observational signatures
Verf.angabe:C. Dominik and C.P. Dullemond
E-Jahr:2024
Jahr:15 February 2024
Umfang:20 S.
Fussnoten:Gesehen am 08.07.2024
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2024
Band/Heft Quelle:682(2024) vom: Feb., Artikel-ID A144, Seite 1-10
ISSN Quelle:1432-0746
Abstract:Context. A leading paradigm in planet formation is currently the streaming instability and pebble accretion scenario. Notably, dust must grow into sizes in a specific regime of Stokes numbers in order to make the processes in the scenario viable and sufficiently effective. The dust growth models currently in use do not implement some of the growth barriers suggested to be relevant in the literature. Aims. We investigate if the bouncing barrier, when effective, has an impact on the timescales and efficiencies of processes such as the streaming instability and pebble accretion as well as on the observational appearance of planet-forming disks.Methods. We implemented a formalism for the bouncing barrier into the publicly available dust growth model DustPy and ran a series of models to understand the impact. Results. We found that the bouncing barrier has a significant effect on the dust evolution in planet-forming disks. In many cases, it reduces the size of the typical or largest particles available in the disk; it produces a very narrow, almost monodisperse, size distribution; and it removes most μm-sized grains in the process, with an impact on scattered light images. It modifies the settling and therefore the effectiveness of and timescales for the streaming instability and for pebble accretion. An active bouncing barrier may well have observational consequences: It may reduce the strength of the signatures of small particles (e.g., the 10 μm silicate feature), and it may create additional shadowed regions visible in scattered light images. Conclusions. Modeling of planet formation that leans heavily on the streaming instability and on pebble accretion should take the bouncing barrier into account. The complete removal of small grains in our model is not consistent with observations. However, this could be resolved by incomplete vertical mixing or some level of erosion in collisions.
DOI:doi:10.1051/0004-6361/202347716
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1051/0004-6361/202347716
 Volltext: https://www.aanda.org/articles/aa/abs/2024/02/aa47716-23/aa47716-23.html
 DOI: https://doi.org/10.1051/0004-6361/202347716
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1894648986
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69231513   QR-Code
zum Seitenanfang