Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schick, Anita [VerfasserIn]   i
 Rauschenberg, Christian [VerfasserIn]   i
 Ader, Leonie Sophia [VerfasserIn]   i
 Daemen, Maud [VerfasserIn]   i
 Wieland, Lena M. [VerfasserIn]   i
 Pätzold, Isabell [VerfasserIn]   i
 Postma, Mary Rose [VerfasserIn]   i
 Schulte-Strathaus, Julia Clara Catharina [VerfasserIn]   i
 Reininghaus, Ulrich [VerfasserIn]   i
Titel:Novel digital methods for gathering intensive time series data in mental health research
Titelzusatz:scoping review of a rapidly evolving field
Verf.angabe:Anita Schick, Christian Rauschenberg, Leonie Ader, Maud Daemen, Lena M. Wieland, Isabell Paetzold, Mary Rose Postma, Julia C.C. Schulte-Strathaus and Ulrich Reininghaus
Jahr:2023
Umfang:11 S.
Fussnoten:"First published online: 15 November 2022".- Artikelübersicht ; Gesehen am 08.07.2024
Titel Quelle:Enthalten in: Psychological medicine
Ort Quelle:Cambridge : Cambridge University Press, 1970
Jahr Quelle:2023
Band/Heft Quelle:53(2023), 1, Seite 55-65
ISSN Quelle:1469-8978
Abstract:Recent technological advances enable the collection of intensive longitudinal data. This scoping review aimed to provide an overview of methods for collecting intensive time series data in mental health research as well as basic principles, current applications, target constructs, and statistical methods for this type of data. - In January 2021, the database MEDLINE was searched. Original articles were identified that (1) used active or passive data collection methods to gather intensive longitudinal data in daily life, (2) had a minimum sample size of N ⩾ 100 participants, and (3) included individuals with subclinical or clinical mental health problems. - In total, 3799 original articles were identified, of which 174 met inclusion criteria. The most widely used methods were diary techniques (e.g. Experience Sampling Methodology), various types of sensors (e.g. accelerometer), and app usage data. Target constructs included affect, various symptom domains, cognitive processes, sleep, dysfunctional behaviour, physical activity, and social media use. There was strong evidence on feasibility of, and high compliance with, active and passive data collection methods in diverse clinical settings and groups. Study designs, sampling schedules, and measures varied considerably across studies, limiting the generalisability of findings. - Gathering intensive longitudinal data has significant potential to advance mental health research. However, more methodological research is required to establish and meet critical quality standards in this rapidly evolving field. Advanced approaches such as digital phenotyping, ecological momentary interventions, and machine-learning methods will be required to efficiently use intensive longitudinal data and deliver personalised digital interventions and services for improving public mental health.
DOI:doi:10.1017/S0033291722003336
URL:kostenfrei: Volltext: https://doi.org/10.1017/S0033291722003336
 kostenfrei: Volltext: https://www.cambridge.org/core/journals/psychological-medicine/article/novel-digital-methods-for-gathering-intensive-tim ...
 DOI: https://doi.org/10.1017/S0033291722003336
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Ambulatory assessment
 big data
 digital phenotyping
 ecological momentary assessment
 experience sampling method
 mental health
 mobile sensing
 psychopathology
 sensor
K10plus-PPN:1894653335
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69231520   QR-Code
zum Seitenanfang