Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Herzog, Roland [VerfasserIn]  |
| Loayza Romero, Karen [VerfasserIn]  |
Titel: | A discretize-then-optimize approach to PDE-constrained shape optimization |
Verf.angabe: | Roland Herzog and Estefanía Loayza-Romero |
E-Jahr: | 2024 |
Jahr: | 28 February 2024 |
Umfang: | 36 S. |
Fussnoten: | Gesehen am 24.07.2024 |
Titel Quelle: | Enthalten in: Control, optimisation and calculus of variations |
Ort Quelle: | Les Ulis : EDP Sciences, 1995 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 30(2024), Artikel-ID 11, Seite 1-36 |
ISSN Quelle: | 1262-3377 |
Abstract: | We consider discretized two-dimensional PDE-constrained shape optimization problems, in which shapes are represented by triangular meshes. Given the connectivity, the space of admissible vertex positions was recently identified to be a smooth manifold, termed the manifold of planar triangular meshes. The latter can be endowed with a complete Riemannian metric, which allows large mesh deformations without jeopardizing mesh quality; see R. Herzog and E. Loayza-Romero, Math. Comput. <b>92<b/> (2022) 1-50. Nonetheless, the discrete shape optimization problem of finding optimal vertex positions does not, in general, possess a globally optimal solution. To overcome this ill-possedness, we propose to add a mesh quality penalization term to the objective function. This allows us to simultaneously render the shape optimization problem solvable, and keep track of the mesh quality. We prove the existence of a globally optimal solution for the penalized problem and establish first-order necessary optimality conditions independently of the chosen Riemannian metric. Because of the independence of the existence results of the choice of the Riemannian metric, we can numerically study the impact of different Riemannian metrics on the steepest descent method. We compare the Euclidean, elasticity, and a novel complete metric, combined with Euclidean and geodesic retractions to perform the mesh deformation. |
DOI: | doi:10.1051/cocv/2023071 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1051/cocv/2023071 |
| kostenfrei: Volltext: https://www.esaim-cocv.org/articles/cocv/abs/2024/01/cocv210177/cocv210177.html |
| DOI: https://doi.org/10.1051/cocv/2023071 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1896205216 |
Verknüpfungen: | → Zeitschrift |
¬A¬ discretize-then-optimize approach to PDE-constrained shape optimization / Herzog, Roland [VerfasserIn]; 28 February 2024 (Online-Ressource)
69237115