Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Klinkhardt, Christian [VerfasserIn]   i
 Kühnel-Widmann, Fabian [VerfasserIn]   i
 Heilig, Michael [VerfasserIn]   i
 Lautenbach, Sven [VerfasserIn]   i
 Wörle, Tim [VerfasserIn]   i
 Vortisch, Peter [VerfasserIn]   i
 Kuhnimhof, Tobias Georg [VerfasserIn]   i
Titel:Quality assessment of OpenStreetMap’s points of interest with large-scale real data
Verf.angabe:Christian Klinkhardt, Fabian Kühnel, Michael Heilig, Sven Lautenbach, Tim Wörle, Peter Vortisch, and Tobias Kuhnimhof
E-Jahr:2023
Jahr:December 2023
Umfang:14 S.
Titel Quelle:Enthalten in: Transportation research record
Ort Quelle:Thousand Oaks, CA : Sage Publishing, 1996
Jahr Quelle:2023
Band/Heft Quelle:2677(2023), 12, Seite 661-674
ISSN Quelle:2169-4052
Abstract:OpenStreetMap (OSM) data are geographical data that are easy and open to access and therefore used for a large set of applications including travel demand modeling. However, often there is a limited awareness about the shortcomings of volunteered geographic information data, such as OSM. One important issue for the application in travel demand modeling is the completeness of OSM elements, particularly points of interest (POI), since it directly influences the predictions of trip distributions. This might cause unreliable model sensitivities and end up in wrong predictions leading to expensive misinterpretations of the effects of policy measures. Because of a lack of large-scale real-world data, a detailed assessment of the quality of POI from OSM has not been done yet. Therefore, in this work, we assess the quality of POI from OSM for use within travel demand models using surveyed real-world data from 49 areas in Germany. We perform a descriptive and a model-based analysis using spatial, demographic, and intrinsic indicators for two common trip purpose categories used in travel demand modeling. We show that the completeness of POI data in OSM depends on the category of POI. We further show that intrinsic indicators and indicators calculated based on data from other sources (e.g., land use or census data) are able to detect quality deficiencies of OSM data
DOI:doi:10.1177/03611981231169280
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1177/03611981231169280
 kostenfrei: Volltext: https://journals.sagepub.com/doi/epub/10.1177/03611981231169280
 DOI: https://doi.org/10.1177/03611981231169280
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1896226124
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69237349   QR-Code
zum Seitenanfang