Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Crommelinck, Sophie [VerfasserIn]   i
 Höfle, Bernhard [VerfasserIn]   i
 Koeva, Mila N. [VerfasserIn]   i
 Yang, Michael Ying [VerfasserIn]   i
 Vosselman, George [VerfasserIn]   i
Titel:Interactive cadastral boundary delineation from UAV data
Verf.angabe:S. Crommelinck, B. Höfle, M.N. Koeva, M.Y. Yang, G. Vosselman
E-Jahr:2018
Jahr:28 May 2018
Umfang:8 S.
Fussnoten:Gesehen am 29.07.2024
Titel Quelle:Enthalten in: ISPRS TC II Mid-term Symposium "Towards Photogrammetry 2020" (2018 : Riva del Garda)ISPRS TC II Mid-term Symposium "Towards Photogrammetry 2020"
Ort Quelle:[Göttingen] : [Copernicus Publications], 2018
Jahr Quelle:2018
Band/Heft Quelle:(2018), Seite 81-88
Abstract:Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure data. UAVs can capture geospatial data at high quality and resolution in a cost-effective, transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral boundaries are delineable. This delineation is to no extent automated, even though physical objects automatically retrievable through image analysis methods mark a large portion of cadastral boundaries. This study proposes (i) a methodology that automatically extracts and processes candidate cadastral boundary features from UAV data, and (ii) a procedure for a subsequent interactive delineation. Part (i) consists of two state-of-the-art computer vision methods, namely gPb contour detection and SLIC superpixels, as well as a classification part assigning costs to each outline according to local boundary knowledge. Part (ii) allows a user-guided delineation by calculating least-cost paths along previously extracted and weighted lines. The approach is tested on visible road outlines in two UAV datasets from Germany. Results show that all roads can be delineated comprehensively. Compared to manual delineation, the number of clicks per 100 m is reduced by up to 86 %, while obtaining a similar localization quality. The approach shows promising results to reduce the effort of manual delineation that is currently employed for indirect (cadastral) surveying.
DOI:doi:10.5194/isprs-annals-IV-2-81-2018
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.5194/isprs-annals-IV-2-81-2018
 Volltext: https://isprs-annals.copernicus.org/articles/IV-2/81/2018/
 DOI: https://doi.org/10.5194/isprs-annals-IV-2-81-2018
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cadastral Boundary Delineation
 Cadastral Mapping
 Image Analysis
 Image Segmentation
 Land Administration
 Machine Learning
 Object Detection
 UAV Photogrammetry
K10plus-PPN:1896853250
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69238151   QR-Code
zum Seitenanfang