Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hummel, Manuela [VerfasserIn]   i
 Hielscher, Thomas [VerfasserIn]   i
 Emde-Rajaratnam, Martina [VerfasserIn]   i
 Salwender, Hans [VerfasserIn]   i
 Beck, Susanne [VerfasserIn]   i
 Scheid, Christoph [VerfasserIn]   i
 Bertsch, Uta [VerfasserIn]   i
 Goldschmidt, Hartmut [VerfasserIn]   i
 Jauch, Anna [VerfasserIn]   i
 Moreaux, Jérôme [VerfasserIn]   i
 Seckinger, Anja [VerfasserIn]   i
 Hose, Dirk [VerfasserIn]   i
Titel:Quantitative integrative survival prediction in multiple myeloma patients treated with bortezomib-based induction, high-dose therapy and autologous stem cell transplantation
Verf.angabe:Manuela Hummel; Thomas Hielscher; Martina Emde-Rajaratnam; Hans Salwender; Susanne Beck; Christof Scheid; Uta Bertsch; Hartmut Goldschmidt; Anna Jauch; Jérôme Moreaux; Anja Seckinger; and Dirk Hose
E-Jahr:2024
Jahr:July 10, 2024
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 07.08.2024
Titel Quelle:Enthalten in: JCO precision oncology
Ort Quelle:Alexandria, VA : American Society of Clinical Oncology, 2017
Jahr Quelle:2024
Band/Heft Quelle:8(2024), Artikel-ID e2300613, Seite 1-12
ISSN Quelle:2473-4284
Abstract:Purpose - Given the high heterogeneity in survival for patients with multiple myeloma, it would be clinically useful to quantitatively predict the individual survival instead of attributing patients to two to four risk groups as in current models, for example, revised International Staging System (R-ISS), R2-ISS, or Mayo-2022-score. - Patients and Methods - Our aim was to develop a quantitative prediction tool for individual patient's 3-/5-year overall survival (OS) probability. We integrated established clinical and molecular risk factors into a comprehensive prognostic model and evaluated and validated its risk discrimination capabilities versus R-ISS, R2-ISS, and Mayo-2022-score. - Results - A nomogram for estimating OS probabilities was built on the basis of a Cox regression model. It allows one to translate the individual risk profile of a patient into 3-/5-year OS probabilities by attributing points to each prognostic factor and summing up all points. The nomogram was externally validated regarding discrimination and calibration. There was no obvious bias or overfitting of the prognostic index on the validation cohort. Resampling-based and external evaluation showed good calibration. The c-index of the model was similar on the training (0.76) and validation cohort (0.75) and significantly higher than for the R-ISS (P < .001) or R2-ISS (P < .01). - Conclusion - In summary, we developed and validated individual quantitative nomogram-based OS prediction. Continuous risk assessment integrating molecular prognostic factors is superior to R-ISS, R2-ISS, or Mayo-2022-score alone.
DOI:doi:10.1200/PO.23.00613
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1200/PO.23.00613
 kostenfrei: Volltext: https://ascopubs.org/doi/10.1200/PO.23.00613
 DOI: https://doi.org/10.1200/PO.23.00613
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1898041288
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69241202   QR-Code
zum Seitenanfang