Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Sanghi, Nimish [VerfasserIn]   i
Titel:Deep reinforcement learning with Python
Titelzusatz:RLHF for chatbots and large language models
Verf.angabe:Nimish Sanghi
Ausgabe:Second edition.
Verlagsort:New York, NY
Verlag:Apress
E-Jahr:2024
Jahr:[2024]
Umfang:1 online resource (650 pages)
Illustrationen:illustrations
Fussnoten:Includes bibliographical references and index
ISBN:9798868802737
Abstract:Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL). This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities. You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it’s for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9798868802737/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Python (Langage de programmation)
 Traitement automatique des langues naturelles
 Intelligence artificielle ; Logiciels
K10plus-PPN:1899108009
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4568063094
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69244807   QR-Code
zum Seitenanfang