| Online-Ressource |
Verfasst von: | Polzer, Constanze [VerfasserIn]  |
| Yilmaz, Eren [VerfasserIn]  |
| Meyer, Carsten [VerfasserIn]  |
| Jang, Hyungseok [VerfasserIn]  |
| Jansen, Olav [VerfasserIn]  |
| Lorenz, Cristian [VerfasserIn]  |
| Bürger, Christian [VerfasserIn]  |
| Glüer, Claus-Christian [VerfasserIn]  |
| Sedaghat, Sam [VerfasserIn]  |
Titel: | AI-based automated detection and stability analysis of traumatic vertebral body fractures on computed tomography |
Verf.angabe: | Constanze Polzer, Eren Yilmaz, Carsten Meyer, Hyungseok Jang, Olav Jansen, Cristian Lorenz, Christian Bürger, Claus-Christian Glüer, Sam Sedaghat |
E-Jahr: | 2024 |
Jahr: | April 2024 |
Umfang: | 7 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Online verfügbar: 13. Februar 2024, Artikelversion: 16. Februar 2024 ; Gesehen am 21.08.2024 |
Titel Quelle: | Enthalten in: European journal of radiology |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1990 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 173(2024) vom: Apr., Artikel-ID 111364, Seite 1-7 |
ISSN Quelle: | 1872-7727 |
Abstract: | Purpose - We developed and tested a neural network for automated detection and stability analysis of vertebral body fractures on computed tomography (CT). - Materials and Methods - 257 patients who underwent CT were included in this Institutional Review Board (IRB) approved study. 463 fractured and 1883 non-fractured vertebral bodies were included, with 190 fractures unstable. Two readers identified vertebral body fractures and assessed their stability. A combination of a Hierarchical Convolutional Neural Network (hNet) and a fracture Classification Network (fNet) was used to build a neural network for the automated detection and stability analysis of vertebral body fractures on CT. Two final test settings were chosen: one with vertebral body levels C1/2 included and one where they were excluded. - Results - The mean age of the patients was 68 ± 14 years. 140 patients were female. The network showed a slightly higher diagnostic performance when excluding C1/2. Accordingly, the network was able to distinguish fractured and non-fractured vertebral bodies with a sensitivity of 75.8 % and a specificity of 80.3 %. Additionally, the network determined the stability of the vertebral bodies with a sensitivity of 88.4 % and a specificity of 80.3 %. The AUC was 87 % and 91 % for fracture detection and stability analysis, respectively. The sensitivity of our network in indicating the presence of at least one fracture / one unstable fracture within the whole spine achieved values of 78.7 % and 97.2 %, respectively, when excluding C1/2. - Conclusion - The developed neural network can automatically detect vertebral body fractures and evaluate their stability concurrently with a high diagnostic performance. |
DOI: | doi:10.1016/j.ejrad.2024.111364 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1016/j.ejrad.2024.111364 |
| kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0720048X24000809 |
| DOI: https://doi.org/10.1016/j.ejrad.2024.111364 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Artificial intelligence |
| Computed tomography |
| Deep learning |
| Neural network |
| Trauma |
| Vertebral body fracture |
K10plus-PPN: | 1899281479 |
Verknüpfungen: | → Zeitschrift |
AI-based automated detection and stability analysis of traumatic vertebral body fractures on computed tomography / Polzer, Constanze [VerfasserIn]; April 2024 (Online-Ressource)