Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Polzer, Constanze [VerfasserIn]   i
 Yilmaz, Eren [VerfasserIn]   i
 Meyer, Carsten [VerfasserIn]   i
 Jang, Hyungseok [VerfasserIn]   i
 Jansen, Olav [VerfasserIn]   i
 Lorenz, Cristian [VerfasserIn]   i
 Bürger, Christian [VerfasserIn]   i
 Glüer, Claus-Christian [VerfasserIn]   i
 Sedaghat, Sam [VerfasserIn]   i
Titel:AI-based automated detection and stability analysis of traumatic vertebral body fractures on computed tomography
Verf.angabe:Constanze Polzer, Eren Yilmaz, Carsten Meyer, Hyungseok Jang, Olav Jansen, Cristian Lorenz, Christian Bürger, Claus-Christian Glüer, Sam Sedaghat
E-Jahr:2024
Jahr:April 2024
Umfang:7 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 13. Februar 2024, Artikelversion: 16. Februar 2024 ; Gesehen am 21.08.2024
Titel Quelle:Enthalten in: European journal of radiology
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1990
Jahr Quelle:2024
Band/Heft Quelle:173(2024) vom: Apr., Artikel-ID 111364, Seite 1-7
ISSN Quelle:1872-7727
Abstract:Purpose - We developed and tested a neural network for automated detection and stability analysis of vertebral body fractures on computed tomography (CT). - Materials and Methods - 257 patients who underwent CT were included in this Institutional Review Board (IRB) approved study. 463 fractured and 1883 non-fractured vertebral bodies were included, with 190 fractures unstable. Two readers identified vertebral body fractures and assessed their stability. A combination of a Hierarchical Convolutional Neural Network (hNet) and a fracture Classification Network (fNet) was used to build a neural network for the automated detection and stability analysis of vertebral body fractures on CT. Two final test settings were chosen: one with vertebral body levels C1/2 included and one where they were excluded. - Results - The mean age of the patients was 68 ± 14 years. 140 patients were female. The network showed a slightly higher diagnostic performance when excluding C1/2. Accordingly, the network was able to distinguish fractured and non-fractured vertebral bodies with a sensitivity of 75.8 % and a specificity of 80.3 %. Additionally, the network determined the stability of the vertebral bodies with a sensitivity of 88.4 % and a specificity of 80.3 %. The AUC was 87 % and 91 % for fracture detection and stability analysis, respectively. The sensitivity of our network in indicating the presence of at least one fracture / one unstable fracture within the whole spine achieved values of 78.7 % and 97.2 %, respectively, when excluding C1/2. - Conclusion - The developed neural network can automatically detect vertebral body fractures and evaluate their stability concurrently with a high diagnostic performance.
DOI:doi:10.1016/j.ejrad.2024.111364
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.ejrad.2024.111364
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0720048X24000809
 DOI: https://doi.org/10.1016/j.ejrad.2024.111364
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Computed tomography
 Deep learning
 Neural network
 Trauma
 Vertebral body fracture
K10plus-PPN:1899281479
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69245847   QR-Code
zum Seitenanfang