Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zaragoza-Jimenez, Nestor [VerfasserIn]   i
 Niehaus, Hauke [VerfasserIn]   i
 Thome, Ina [VerfasserIn]   i
 Vogelbacher, Christoph [VerfasserIn]   i
 Ende, Gabriele [VerfasserIn]   i
 Kamp-Becker, Inge [VerfasserIn]   i
 Endres, Dominik [VerfasserIn]   i
 Jansen, Andreas [VerfasserIn]   i
Titel:Modeling face recognition in the predictive coding framework
Titelzusatz:a combined computational modeling and functional imaging study
Verf.angabe:Nestor Zaragoza-Jimenez, Hauke Niehaus, Ina Thome, Christoph Vogelbacher, Gabriele Ende, Inge Kamp-Becker, Dominik Endres and Andreas Jansen
E-Jahr:2023
Jahr:November 2023
Umfang:23 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 26. Juli 2023, Artikelversion: 11. Oktober 2023 ; Gesehen am 22.08.2024
Titel Quelle:Enthalten in: Cortex
Ort Quelle:Paris : Elsevier Masson, 1964
Jahr Quelle:2023
Band/Heft Quelle:168(2023), Seite 203-225
ISSN Quelle:1973-8102
Abstract:The learning of new facial identities and the recognition of familiar faces are crucial processes for social interactions. Recently, a combined computational modeling and functional magnetic resonance imaging (fMRI) study used predictive coding as a biologically plausible framework to model face identity learning and to relate specific model parameters with brain activity (Apps and Tsakiris, Nat Commun 4, 2698, 2013). On the one hand, it was shown that behavioral responses on a two-option face recognition task could be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. On the other hand, brain activity in specific brain regions was associated with these parameters. More specifically, brain activity in the superior temporal sulcus (STS) varied with contextual familiarity, whereas activity in the fusiform face area (FFA) covaried with the prediction error parameter that updated facial familiarity. Literature combining fMRI assessments and computational modeling in humans still needs to be expanded. Furthermore, prior results are largely not replicated. The present study was, therefore, specifically set up to replicate these previous findings. Our results support the original findings in two critical aspects. First, on a group level, the behavioral responses were modeled best by the same computational model reported by the original authors. Second, we showed that estimates of these model parameters covary with brain activity in specific, face-sensitive brain regions. Our results thus provide further evidence that the functional properties of the face perception network conform to central principles of predictive coding. However, our study yielded diverging findings on specific computational model parameters reflected in brain activity. On the one hand, we did not find any evidence of a computational involvement of the STS. On the other hand, our results showed that activity in the right FFA was associated with multiple computational model parameters. Our data do not provide evidence for functional segregation between particular face-sensitive brain regions, as previously proposed.
DOI:doi:10.1016/j.cortex.2023.05.021
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.cortex.2023.05.021
 Volltext: https://www.sciencedirect.com/science/article/pii/S0010945223001648
 DOI: https://doi.org/10.1016/j.cortex.2023.05.021
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational modeling
 Core system
 Face learning
 FFA
 fMRI
 Functional magnetic resonance imaging
 Functional neuroimaging
 Predictive coding
 pSTS
K10plus-PPN:1899385037
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69246408   QR-Code
zum Seitenanfang