Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Haß, Joachim [VerfasserIn]   i
 Ardid, Salva [VerfasserIn]   i
 Sherfey, Jason [VerfasserIn]   i
 Kopell, Nancy [VerfasserIn]   i
Titel:Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities
Verf.angabe:Joachim Hass, Salva Ardid, Jason Sherfey, Nancy Kopell
E-Jahr:2022
Jahr:August 2022
Umfang:18 S.
Fussnoten:Online verfügbar: 6. Mai 2022, Artikelversion: 20. Mai 2022 ; Gesehen am 26.08.2024
Titel Quelle:Enthalten in: Progress in neurobiology
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1973
Jahr Quelle:2022
Band/Heft Quelle:215(2022) vom: Aug., Artikel-ID 102287, Seite 1-18
ISSN Quelle:1873-5118
Abstract:Persistent activity, the maintenance of neural activation over short periods of time in cortical networks, is widely thought to underlie the cognitive function of working memory. A large body of modeling studies has reproduced this kind of activity using cell assemblies with strengthened synaptic connections. However, almost all of these studies have considered persistent activity within networks with homogeneous neurons and synapses, making it difficult to judge the validity of such model results for cortical dynamics, which is based on highly heterogeneous neurons. Here, we consider persistent activity in a detailed, strongly data-driven network model of the prefrontal cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent activity could not be reproduced in this model without incorporating further constraints. We identified three factors that prevent successful persistent activity: heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters of short-term synaptic plasticity and heterogeneity in the synaptic weights. We also discovered a general dynamic mechanism that prevents persistent activity in the presence of heterogeneities, namely a gradual drop-out of cell assembly neurons out of a bistable regime as input variability increases. Based on this mechanism, we found that persistent activity is recovered if heterogeneity is compensated, e.g., by a homeostatic plasticity mechanism. Cell assemblies shaped in this way may be potentially targeted by distinct inputs or become more responsive to specific tuning or spectral properties. Finally, we show that persistent activity in the model is robust against external noise, but the compensation of heterogeneities may prevent the dynamic generation of intrinsic in vivo-like irregular activity. These results may help informing the ongoing debate about the neural basis of working memory.
DOI:doi:10.1016/j.pneurobio.2022.102287
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.pneurobio.2022.102287
 Volltext: https://www.sciencedirect.com/science/article/pii/S0301008222000739
 DOI: https://doi.org/10.1016/j.pneurobio.2022.102287
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Data-driven network model
 Heterogeneity
 Irregular activity
 Persistent activity
 Prefrontal cortex
 Working memory
K10plus-PPN:1899539735
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69247018   QR-Code
zum Seitenanfang