Standort: ---
Exemplare:
---
| Online-Ressource |
Titel: | Prompt engineering deep dive |
Titelzusatz: | from prototyping to designing prompt engineering experiments |
Mitwirkende: | Soares, Lucas [MitwirkendeR]  |
Institutionen: | O'Reilly (Firm), [Verlag]  |
Ausgabe: | [First edition]. |
Verlagsort: | [Sebastopol, California] |
Verlag: | O'Reilly Media, Inc. |
E-Jahr: | 2024 |
Jahr: | [2024] |
Umfang: | 1 online resource (1 video file (2 hr., 16 min.)) |
Illustrationen: | sound, color. |
Fussnoten: | Online resource; title from title details screen (O’Reilly, viewed August 5, 2024) |
Abstract: | This course delves into the emerging field of prompt engineering, focusing on how to effectively interact with AI models to achieve precise outcomes. As AI becomes increasingly integrated into various professional fields, understanding how to communicate with these systems is crucial. This course addresses common challenges faced by AI and data professionals, software developers, and business analysts in extracting accurate and relevant responses from AI models. By teaching skills like crafting effective prompts, applying advanced techniques like Chain of Thought Prompting, and teaching the foundations for creating complex prompt engineering experiments, participants will enhance their ability to leverage AI in their respective roles, leading to more efficient problem-solving and decision-making processes. |
URL: | Aggregator: https://learning.oreilly.com/library/view/-/0790145740359/?ar |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Intelligence artificielle |
| Préparation des données (Informatique) |
| artificial intelligence |
| Instructional films |
| Nonfiction films |
| Internet videos |
| Films de formation |
| Films autres que de fiction |
| Vidéos sur Internet |
K10plus-PPN: | 1900847809 |
|
|
| |
Lokale URL UB: | Zum Volltext |
|
|
| Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg |
| Bestellen/Vormerken für Benutzer des Klinikums Mannheim Eigene Kennung erforderlich |
Bibliothek/Idn: | UW / m4573896740 |
Lokale URL Inst.: | Zum Volltext |
Prompt engineering deep dive / Soares, Lucas [MitwirkendeR]; [2024] (Online-Ressource)
69249378