Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Shiu, Peter [VerfasserIn]   i
Titel:Number Theory with Computations
Verf.angabe:by Peter Shiu
Ausgabe:1st ed. 2024.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2024
Jahr:2024.
 2024.
Umfang:1 Online-Ressource(XVI, 442 p. 10 illus., 8 illus. in color.)
Gesamttitel/Reihe:Springer Undergraduate Mathematics Series
ISBN:978-3-031-63814-5
Abstract:Part I Elementary Number Theory -- 1 Basics -- 2 Arithmetic functions I -- 3 Prime numbers: Euclid and Eratosthenes -- 4 Quadratic residues and congruences -- 5 Primitive roots -- 6 Sums of squares -- 7 Continued fractions -- Part II Analytic Number Theory -- 8 Diophantine approximations -- 9 Distribution of prime numbers -- 10 Arithmetic functions II -- 11 Prime number theorem -- 12 Primes in arithmetic progressions -- 13 Smooth numbers -- 14 Circle method.
 This introductory text is designed for undergraduate courses in number theory, covering both elementary number theory and analytic number theory. The book emphasises computational aspects, including algorithms and their implementation in Python. The book is divided into two parts. The first part, on elementary number theory, deals with concepts such as induction, divisibility, congruences, primitive roots, cryptography, and continued fractions. The second part is devoted to analytic number theory and includes chapters on Dirichlet’s theorem on primes in arithmetic progressions, the prime number theorem, smooth numbers, and the famous circle method of Hardy and Littlewood. The book contains many topics not often found in introductory textbooks, such as Aubry’s theorem, the Tonelli–Shanks algorithm, factorisation methods, continued fraction representations of e, and the irrationality of ����(3). Each chapter concludes with a summary and notes, as well as numerous exercises. Assuming only basic calculus for the first part of the book, the second part assumes some knowledge of complex analysis. Familiarity with basic coding syntax will be helpful for the computational exercises.
DOI:doi:10.1007/978-3-031-63814-5
URL:Resolving-System: https://doi.org/10.1007/978-3-031-63814-5
 DOI: https://doi.org/10.1007/978-3-031-63814-5
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Shiu, Peter: Number theory with computations. - Cham, Switzerland : Springer Nature, 2024. - xvi, 442 Seiten
K10plus-PPN:1902234839
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69252192   QR-Code
zum Seitenanfang