Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Bechtel, Sebastian [VerfasserIn]   i
Titel:Square Roots of Elliptic Systems in Locally Uniform Domains
Verf.angabe:by Sebastian Bechtel
Ausgabe:1st ed. 2024.
Verlagsort:Cham
 Cham
Verlag:Springer International Publishing
 Imprint: Birkhäuser
E-Jahr:2024
Jahr:2024.
 2024.
Umfang:1 Online-Ressource(IX, 188 p. 2 illus. in color.)
Gesamttitel/Reihe:Linear Operators and Linear Systems ; 303
ISBN:978-3-031-63768-1
Abstract:Introduction -- Locally uniform domains -- A density result for locally uniform domains -- Sobolev extension operator -- A short account on sectorial and bisectorial operators -- Elliptic systems in divergence form -- Porous sets -- Sobolev spaces with a vanishing trace condition -- Hardy’s inequality -- Real interpolation of Sobolev spaces -- Higher regularity for fractional powers of the Laplacian -- First order formalism -- Kato’s square root property on thick sets -- Removing the thickness condition -- Interlude: Extension operators for fractional Sobolev spaces -- Critical numbers and Lp − Lq bounded families of operators -- Lp-bounds for the H1-calculus and Riesz transform -- Calder´on–Zygmund decomposition for Sobolev functions -- Lp bounds for square roots of elliptic systems -- References -- Index.
 This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to comprehend. The centerpiece of the book is the solution to Kato's square root problem on locally uniform domains. The Kato result is complemented by corresponding USDL^pUSD bounds in natural intervals of integrability parameters. This book will be useful to researchers in harmonic analysis, functional analysis and related areas.
DOI:doi:10.1007/978-3-031-63768-1
URL:Resolving-System: https://doi.org/10.1007/978-3-031-63768-1
 DOI: https://doi.org/10.1007/978-3-031-63768-1
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Bechtel, Sebastian: Square roots of elliptic systems in locally uniform domains. - Cham : Springer International Publishing, 2024. - ix, 188 Seiten
K10plus-PPN:1902720970
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69254107   QR-Code
zum Seitenanfang