Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Andrássy, Róbert [VerfasserIn]   i
 Leidi, Giovanni [VerfasserIn]   i
 Higl, Johann [VerfasserIn]   i
 Edelmann, Philipp V. F. [VerfasserIn]   i
 Schneider, Fabian [VerfasserIn]   i
 Röpke, Friedrich [VerfasserIn]   i
Titel:Towards a self-consistent model of the convective core boundary in upper main sequence stars
Titelzusatz:I. 2.5D and 3D simulations
Verf.angabe:R. Andrassy, G. Leidi, J. Higl, P.V.F. Edelmann, F.R.N. Schneider, and F.K. Röpke
E-Jahr:2024
Jahr:12 march 2024
Umfang:16 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 17.09.2024
Schrift/Sprache:Mit einer Zusammenfassung in englischer Sprache
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2024
Band/Heft Quelle:683(2024) vom: März, Artikel-ID A97, Seite 1-16
ISSN Quelle:1432-0746
Abstract:There is strong observational evidence that the convective cores of intermediate-mass and massive main sequence stars are substantially larger than those predicted by standard stellar-evolution models. However, it is unclear what physical processes cause this phenomenon or how to predict the extent and stratification of stellar convective boundary layers. Convective penetration is a thermal-timescale process that is likely to be particularly relevant during the slow evolution on the main sequence. We use our low-Mach-number SEVEN-LEAGUE HYDRO code to study this process in 2.5D and 3D geometries. Starting with a chemically homogeneous model of a 15 <i>M<i/><sub>⊙<sub/> zero-age main sequence star, we construct a series of simulations with the luminosity increased and opacity decreased by the same factor, ranging from 10<sup>3<sup/> to 10<sup>6<sup/>. After reaching thermal equilibrium, all of our models show a clear penetration layer; its thickness becomes statistically constant in time and it is shown to converge upon grid refinement. The penetration layer becomes nearly adiabatic with a steep transition to a radiative stratification in simulations at the lower end of our luminosity range. This structure corresponds to the adiabatic ‘step overshoot’ model often employed in stellar-evolution calculations. The simulations with the highest and lowest luminosity differ by less than a factor of two in the penetration distance. The high computational cost of 3D simulations makes our current 3D data set rather sparse. Depending on how we extrapolate the 3D data to the actual luminosity of the initial stellar model, we obtain penetration distances ranging from 0.09 to 0.44 pressure scale heights, which is broadly compatible with observations.
DOI:doi:10.1051/0004-6361/202347407
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1051/0004-6361/202347407
 Volltext: https://www.aanda.org/articles/aa/abs/2024/03/aa47407-23/aa47407-23.html
 DOI: https://doi.org/10.1051/0004-6361/202347407
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1902724763
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69254114   QR-Code
zum Seitenanfang