| Online-Ressource |
Verfasst von: | Wies, Christoph [VerfasserIn]  |
| Schneider, Lucas [VerfasserIn]  |
| Haggenmüller, Sarah [VerfasserIn]  |
| Bucher, Tabea-Clara [VerfasserIn]  |
| Hobelsberger, Sarah [VerfasserIn]  |
| Heppt, Markus V. [VerfasserIn]  |
| Ferrara, Gerardo [VerfasserIn]  |
| Krieghoff-Henning, Eva I. [VerfasserIn]  |
| Brinker, Titus Josef [VerfasserIn]  |
Titel: | Evaluating deep learning-based melanoma classification using immunohistochemistry and routine histology |
Titelzusatz: | a three center study |
Verf.angabe: | Christoph Wies, Lucas Schneider, Sarah Haggenmüller, Tabea-Clara Bucher, Sarah Hobelsberger, Markus V. Heppt, Gerardo Ferrara, Eva I. Krieghoff-Henning, Titus J. Brinker |
E-Jahr: | 2024 |
Jahr: | January 19, 2024 |
Umfang: | 13 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 23.09.2024 |
Titel Quelle: | Enthalten in: PLOS ONE |
Ort Quelle: | San Francisco, California, US : PLOS, 2006 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 19(2024), 1, Artikel-ID e0297146, Seite 1-13 |
ISSN Quelle: | 1932-6203 |
Abstract: | Pathologists routinely use immunohistochemical (IHC)-stained tissue slides against MelanA in addition to hematoxylin and eosin (H&E)-stained slides to improve their accuracy in diagnosing melanomas. The use of diagnostic Deep Learning (DL)-based support systems for automated examination of tissue morphology and cellular composition has been well studied in standard H&E-stained tissue slides. In contrast, there are few studies that analyze IHC slides using DL. Therefore, we investigated the separate and joint performance of ResNets trained on MelanA and corresponding H&E-stained slides. The MelanA classifier achieved an area under receiver operating characteristics curve (AUROC) of 0.82 and 0.74 on out of distribution (OOD)-datasets, similar to the H&E-based benchmark classification of 0.81 and 0.75, respectively. A combined classifier using MelanA and H&E achieved AUROCs of 0.85 and 0.81 on the OOD datasets. DL MelanA-based assistance systems show the same performance as the benchmark H&E classification and may be improved by multi stain classification to assist pathologists in their clinical routine. |
DOI: | doi:10.1371/journal.pone.0297146 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1371/journal.pone.0297146 |
| Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297146 |
| DOI: https://doi.org/10.1371/journal.pone.0297146 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Breast cancer |
| Cancer detection and diagnosis |
| Colorectal cancer |
| Cutaneous melanoma |
| Immunohistochemistry techniques |
| Lesions |
| Melanoma |
| Skin tumors |
K10plus-PPN: | 1903096111 |
Verknüpfungen: | → Zeitschrift |
Evaluating deep learning-based melanoma classification using immunohistochemistry and routine histology / Wies, Christoph [VerfasserIn]; January 19, 2024 (Online-Ressource)