Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Liew, Hans [VerfasserIn]   i
 Tessonnier, Thomas [VerfasserIn]   i
 Mein, Stewart [VerfasserIn]   i
 Magro, Giuseppe [VerfasserIn]   i
 Glimelius, Lars [VerfasserIn]   i
 Coniavitis, Elias [VerfasserIn]   i
 Held, Thomas [VerfasserIn]   i
 Haberer, Thomas [VerfasserIn]   i
 Abdollahi, Amir [VerfasserIn]   i
 Debus, Jürgen [VerfasserIn]   i
 Dokić, Ivana [VerfasserIn]   i
 Mairani, Andrea [VerfasserIn]   i
Titel:Robustness of carbon-ion radiotherapy against DNA damage repair associated radiosensitivity variation based on a biophysical model
Verf.angabe:Hans Liew, Thomas Tessonnier, Stewart Mein, Giuseppe Magro, Lars Glimelius, Elias Coniavitis, Thomas Held, Thomas Haberer, Amir Abdollahi, Jürgen Debus, Ivana Dokic, Andrea Mairani
E-Jahr:2024
Jahr:May 2024
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Veröffentlicht: 03 April 2024 ; Gesehen am 25.09.2024
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2024
Band/Heft Quelle:51(2024), 5 vom: Mai, Seite 3782-3795
ISSN Quelle:2473-4209
 1522-8541
Abstract:Background Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. Purpose To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. Methods and Materials The “UNIfied and VERSatile bio response Engine” (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. Results UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change of D50{D_50\ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from a D2{D_2\ of 2.65 to 1.64 Gy, which lies below the level found for CIRT (D2{D_2\ = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT (Dmean{D_mean\ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). Conclusions The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.
DOI:doi:10.1002/mp.17045
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1002/mp.17045
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17045
 DOI: https://doi.org/10.1002/mp.17045
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:DNA damage repair interference
 LET boost
 UNIVERSE biophysical modelling
K10plus-PPN:1903444659
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69256216   QR-Code
zum Seitenanfang