Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Elsemüller, Lasse [VerfasserIn]   i
 Schnürch, Martin [VerfasserIn]   i
 Bürkner, Paul-Christian [VerfasserIn]   i
 Radev, Stefan [VerfasserIn]   i
Titel:A deep learning method for comparing Bayesian hierarchical models
Verf.angabe:Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev
Jahr:2024
Umfang:?
Fussnoten:Gesehen am 30.09.2024
Titel Quelle:Enthalten in: Psychological methods
Ort Quelle:Washington, DC : American Psychological Association, 1996
Jahr Quelle:2024
Band/Heft Quelle:(2024), Seite ?
ISSN Quelle:1939-1463
Abstract:Bayesian model comparison (BMC) offers a principled approach to assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. Additionally, we demonstrate how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method. (PsycInfo Database Record (c) 2024 APA, all rights reserved)
DOI:doi:10.1037/met0000645
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1037/met0000645
 DOI: https://doi.org/10.1037/met0000645
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Bayesian Analysis
 Deep Neural Networks
 Inference
 Mathematical Modeling
 Probability
 Simulation
K10plus-PPN:1903735750
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69257337   QR-Code
zum Seitenanfang