Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Weigel, Bettina [VerfasserIn]   i
 Tegethoff, Jana F. [VerfasserIn]   i
 Grieder, Sarah D. [VerfasserIn]   i
 Lim, Bryce [VerfasserIn]   i
 Nagarajan, Bhuvaneswari [VerfasserIn]   i
 Liu, Yu-Chao [VerfasserIn]   i
 Truberg, Jule [VerfasserIn]   i
 Papageorgiou, Dimitris [VerfasserIn]   i
 Adrián Segarra, Juan Manuel [VerfasserIn]   i
 Schmidt, Laura K. [VerfasserIn]   i
 Kaspar, Janina [VerfasserIn]   i
 Poisel, Eric [VerfasserIn]   i
 Heinzelmann, Elisa [VerfasserIn]   i
 Saraswat, Manu [VerfasserIn]   i
 Christ, Marleen [VerfasserIn]   i
 Arnold, Christian [VerfasserIn]   i
 Ibarra, Ignacio L. [VerfasserIn]   i
 Campos, Joaquin [VerfasserIn]   i
 Krijgsveld, Jeroen [VerfasserIn]   i
 Monyer, Hannah [VerfasserIn]   i
 Zaugg, Judith B. [VerfasserIn]   i
 Acuna Goycolea, Claudio [VerfasserIn]   i
 Mall, Moritz [VerfasserIn]   i
Titel:MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention
Verf.angabe:Bettina Weigel, Jana F. Tegethoff, Sarah D. Grieder, Bryce Lim, Bhuvaneswari Nagarajan, Yu-Chao Liu, Jule Truberg, Dimitris Papageorgiou, Juan M. Adrian-Segarra, Laura K. Schmidt, Janina Kaspar, Eric Poisel, Elisa Heinzelmann, Manu Saraswat, Marleen Christ, Christian Arnold, Ignacio L. Ibarra, Joaquin Campos, Jeroen Krijgsveld, Hannah Monyer, Judith B. Zaugg, Claudio Acuna and Moritz Mall
E-Jahr:2023
Jahr:May 2023
Umfang:14 S.
Illustrationen:Illustratione
Fussnoten:Online veröffentlicht: 14. Februar 2023 ; Gesehen am 09.10.2024
Titel Quelle:Enthalten in: Molecular psychiatry
Ort Quelle:[London] : Springer Nature, 1997
Jahr Quelle:2023
Band/Heft Quelle:28(2023), 5, Seite 2122-2135
ISSN Quelle:1476-5578
Abstract:MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
DOI:doi:10.1038/s41380-023-01959-7
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41380-023-01959-7
 kostenfrei: Volltext: https://www.nature.com/articles/s41380-023-01959-7
 DOI: https://doi.org/10.1038/s41380-023-01959-7
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Autism spectrum disorders
 Neuroscience
 Stem cells
K10plus-PPN:1905189184
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69260741   QR-Code
zum Seitenanfang