| Online-Ressource |
Verfasst von: | Heidt, Christian [VerfasserIn]  |
| Bohn, Jonas [VerfasserIn]  |
| Stollmayer, Róbert [VerfasserIn]  |
| Stackelberg, Oyunbileg von [VerfasserIn]  |
| Rheinheimer, Stephan [VerfasserIn]  |
| Bozorgmehr, Farastuk [VerfasserIn]  |
| Senghas, Karsten [VerfasserIn]  |
| Schlamp, Kai [VerfasserIn]  |
| Weinheimer, Oliver [VerfasserIn]  |
| Giesel, Frederik L. [VerfasserIn]  |
| Kauczor, Hans-Ulrich [VerfasserIn]  |
| Heußel, Claus Peter [VerfasserIn]  |
| Heußel, Gudula [VerfasserIn]  |
Titel: | Delta-radiomics features of ADC maps as early predictors of treatment response in lung cancer |
Verf.angabe: | Christian M. Heidt, Jonas R. Bohn, Róbert Stollmayer, Oyunbileg von Stackelberg, Stephan Rheinheimer, Farastuk Bozorgmehr, Karsten Senghas, Kai Schlamp, Oliver Weinheimer, Frederik L. Giesel, Hans-Ulrich Kauczor, Claus Peter Heußel and Gudula Heußel |
E-Jahr: | 2024 |
Jahr: | 26 August 2024 |
Umfang: | 11 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 16.10.2024 |
Titel Quelle: | Enthalten in: Insights into imaging |
Ort Quelle: | Berlin : Springer, 2010 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 15(2024), Artikel-ID 218, Seite 1-11 |
ISSN Quelle: | 1869-4101 |
Abstract: | Objective: Investigate the feasibility of detecting early treatment-induced tumor tissue changes in patients with advanced lung adenocarcinoma using diffusion-weighted MRI-derived radiomics features. Methods: This prospective observational study included 144 patients receiving either tyrosine kinase inhibitors (TKI, n = 64) or platinum-based chemotherapy (PBC, n = 80) for the treatment of pulmonary adenocarcinoma. Patients underwent diffusion-weighted MRI the day prior to therapy (baseline, all patients), as well as either + 1 (PBC) or + 7 and + 14 (TKI) days after treatment initiation. One hundred ninety-seven radiomics features were extracted from manually delineated tumor volumes. Feature changes over time were analyzed for correlation with treatment response (TR) according to CT-derived RECIST after 2 months and progression-free survival (PFS). Results: Out of 14 selected delta-radiomics features, 6 showed significant correlations with PFS or TR. Most significant correlations were found after 14 days. Features quantifying ROI heterogeneity, such as short-run emphasis (p = 0.04(pfs)/0.005(tr)), gradient short-run emphasis (p = 0.06(pfs)/0.01(tr)), and zone percentage (p = 0.02(pfs)/0.01(tr)) increased in patients with overall better TR whereas patients with worse overall response showed an increase in features quantifying ROI homogeneity, such as normalized inverse difference (p = 0.01(pfs)/0.04(tr)). Clustering of these features allows stratification of patients into groups of longer and shorter survival. Conclusion: Two weeks after initiation of treatment, diffusion MRI of lung adenocarcinoma reveals quantifiable tissue-level insights that correlate well with future treatment (non-)response. Diffusion MRI-derived radiomics thus shows promise as an early, radiation-free decision-support to predict efficacy and potentially alter the treatment course early. Critical relevance statement: Delta-Radiomics texture features derived from diffusion-weighted MRI of lung adenocarcinoma, acquired as early as 2 weeks after initiation of treatment, are significantly correlated with RECIST TR and PFS as obtained through later morphological imaging. |
DOI: | doi:10.1186/s13244-024-01787-5 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1186/s13244-024-01787-5 |
| DOI: https://doi.org/10.1186/s13244-024-01787-5 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Diffusion-weighted MRI |
| Lung cancer |
| Non-small cell lung cancer |
| Radiomics |
| Tyrosine kinase inhibitors |
K10plus-PPN: | 1905865457 |
Verknüpfungen: | → Zeitschrift |
Delta-radiomics features of ADC maps as early predictors of treatment response in lung cancer / Heidt, Christian [VerfasserIn]; 26 August 2024 (Online-Ressource)