| Online-Ressource |
Verfasst von: | Rusche, Daniel [VerfasserIn]  |
| Englert, Nils [VerfasserIn]  |
| Runz, Marlen [VerfasserIn]  |
| Hetjens, Svetlana [VerfasserIn]  |
| Langner, Cord [VerfasserIn]  |
| Gaiser, Timo [VerfasserIn]  |
| Weis, Cleo-Aron Thias [VerfasserIn]  |
Titel: | Unraveling a histopathological needle-in-haystack problem |
Titelzusatz: | exploring the challenges of detecting tumor budding in colorectal carcinoma histology |
Verf.angabe: | Daniel Rusche, Nils Englert, Marlen Runz, Svetlana Hetjens, Cord Langner, Timo Gaiser and Cleo-Aron Weis |
E-Jahr: | 2024 |
Jahr: | 22 January 2024 |
Umfang: | 1-21$t21 |
Fussnoten: | Gesehen am 17.10.2024 |
Titel Quelle: | Enthalten in: Applied Sciences |
Ort Quelle: | Basel : MDPI, 2011 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 14(2024), 2, Artikel-ID 949 |
ISSN Quelle: | 2076-3417 |
Abstract: | Background: In this study focusing on colorectal carcinoma (CRC), we address the imperative task of predicting post-surgery treatment needs by identifying crucial tumor features within whole slide images of solid tumors, analogous to locating a needle in a histological haystack. We evaluate two approaches to address this challenge using a small CRC dataset. Methods: First, we explore a conventional tile-level training approach, testing various data augmentation methods to mitigate the memorization effect in a noisy label setting. Second, we examine a multi-instance learning (MIL) approach at the case level, adapting data augmentation techniques to prevent over-fitting in the limited data set context. Results: The tile-level approach proves ineffective due to the limited number of informative image tiles per case. Conversely, the MIL approach demonstrates success for the small dataset when coupled with post-feature vector creation data augmentation techniques. In this setting, the MIL model accurately predicts nodal status corresponding to expert-based budding scores for these cases. Conclusions: This study incorporates data augmentation techniques into a MIL approach, highlighting the effectiveness of the MIL method in detecting predictive factors such as tumor budding, despite the constraints of a limited dataset size. |
DOI: | doi:10.3390/app14020949 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/app14020949 |
| kostenfrei: Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.3390%2Fapp14020949&DestApp=D ... |
| DOI: https://doi.org/10.3390/app14020949 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | budding |
| CANCER |
| classification |
| CRC |
| DIAGNOSIS |
| histopathology |
| PARAMETER |
| supervised segmentation |
K10plus-PPN: | 1905980108 |
Verknüpfungen: | → Zeitschrift |
Unraveling a histopathological needle-in-haystack problem / Rusche, Daniel [VerfasserIn]; 22 January 2024 (Online-Ressource)