Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pohl, Christopher [VerfasserIn]   i
 Kunzmann, Moritz [VerfasserIn]   i
 Brandt, Nico [VerfasserIn]   i
 Koppe, Charlotte [VerfasserIn]   i
 Waletzko-Hellwig, Janine [VerfasserIn]   i
 Bader, Rainer [VerfasserIn]   i
 Kalle, Friederike [VerfasserIn]   i
 Kersting, Stephan [VerfasserIn]   i
 Behrendt, Daniel [VerfasserIn]   i
 Schlosser, Michael [VerfasserIn]   i
 Hoene, Andreas [VerfasserIn]   i
Titel:Quantitative analysis of trabecular bone tissue cryosections via a fully automated neural network-based approach
Verf.angabe:Christopher Pohl, Moritz Kunzmann, Nico Brandt, Charlotte Koppe, Janine Waletzko-Hellwig, Rainer Bader, Friederike Kalle, Stephan Kersting, Daniel Behrendt, Michael Schlosser, Andreas Hoene
E-Jahr:2024
Jahr:April 16, 2024
Umfang:15 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 21.10.2024
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2024
Band/Heft Quelle:19(2024), 4, Artikel-ID e0298830, Seite 1-15
ISSN Quelle:1932-6203
Abstract:Cryosectioning is known as a common and well-established histological method, due to its easy accessibility, speed, and cost efficiency. However, the creation of bone cryosections is especially difficult. In this study, a cryosectioning protocol for trabecular bone that offers a relatively cheap and undemanding alternative to paraffin or resin embedded sectioning was developed. Sections are stainable with common histological dying methods while maintaining sufficient quality to answer a variety of scientific questions. Furthermore, this study introduces an automated protocol for analysing such sections, enabling users to rapidly access a wide range of different stainings. Therefore, an automated ‘QuPath’ neural network-based image analysis protocol for histochemical analysis of trabecular bone samples was established, and compared to other automated approaches as well as manual analysis regarding scattering, quality, and reliability. This highly automated protocol can handle enormous amounts of image data with no significant differences in its results when compared with a manual method. Even though this method was applied specifically for bone tissue, it works for a wide variety of different tissues and scientific questions.
DOI:doi:10.1371/journal.pone.0298830
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1371/journal.pone.0298830
 kostenfrei: Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298830
 DOI: https://doi.org/10.1371/journal.pone.0298830
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Bone imaging
 Computer software
 DAPI staining
 Histology
 Image analysis
 Imaging techniques
 Neural networks
 Specimen sectioning
K10plus-PPN:1906322392
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69263866   QR-Code
zum Seitenanfang