Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Handbook of AI and Data Sciences for Sleep Disorders
Mitwirkende:Berry, Richard B. [HerausgeberIn]   i
 Pardalos, Panos M. [HerausgeberIn]   i
 Xian, Xiaochen [HerausgeberIn]   i
Verf.angabe:edited by Richard B. Berry, Panos M. Pardalos, Xiaochen Xian
Ausgabe:1st ed. 2024.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2024
Jahr:2024.
 2024.
Umfang:1 Online-Ressource(X, 304 p. 63 illus., 54 illus. in color.)
Gesamttitel/Reihe:Springer Optimization and Its Applications ; 216
ISBN:978-3-031-68263-6
Abstract:Empowering Sleep Health: Unleashing the Potential of Artificial Intelligence and Data Science in Sleep Disorders -- Polysomnography Raw Data Extraction, Exploration, and Preprocessing -- Sleep stage probabilities derived from neurological or cardio-respiratory signals by means of artificial intelligence -- From Screening at Clinic to Diagnosis at Home: How AI/ ML/DL Algorithms are Transforming Sleep Apnea Detection -- Modeling and Analysis of Mechanical Work of Breathing -- A Probabilistic Perspective: Bayesian Neural Network for Sleep Apnea Detection -- Automatic and machine learning methods for detection and characterization of REM sleep behavior disorder -- Sleep Cyclic Alternating Pattern (CAP) as a Neurophysiological Marker of Brain Health -- Deep Learning with Electrocardiograms -- Machine learning automated analysis applied to mandibular jaw movements during sleep: a window on polysomnography -- Nightmare disorder: An Overview.
 The rise of lifestyle changes resulting from constant connectivity, irregular work schedules, heightened stress, and disruptive sleep patterns, have contributed to increasing insomnia rates. Exacerbated by the COVID-19 pandemic, sleep disorders are more prevalent than ever. This handbook offers a comprehensive exploration of the fusion of Artificial Intelligence (AI) and data science within the realm of sleep disorders, presenting innovative approaches to diagnosis, treatment, and personalized care. The interdisciplinary nature of this handbook fosters collaboration between experts from diverse fields, including computer science, engineering, neuroscience, medicine, public health, AI, data science, and sleep medicine. Each chapter delves into specific aspects of sleep disorder analysis, innovative methodologies, novel insights, and real-world applications that showcase the transformative potential of AI and data science in sleep medicine, from analyzing sleep patterns and predicting disorder risk factors to utilizing big data analytics for large-scale epidemiological studies. This handbook hopes to offer a comprehensive resource for researchers, clinicians, and policymakers striving to address the challenges in sleep medicine.
DOI:doi:10.1007/978-3-031-68263-6
URL:Resolving-System: https://doi.org/10.1007/978-3-031-68263-6
 DOI: https://doi.org/10.1007/978-3-031-68263-6
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe: Handbook of AI and data sciences for sleep disorders. - Cham, Switzerland : Springer Nature, 2024. - x, 304 Seiten
Sach-SW:COM094000
 COMPUTERS / Database Management / General
 Databases
 Datenbanken
 MAT042000
 MEDICAL / Neurology
 Machine learning
 Maschinelles Lernen
 Neurologie und klinische Neurophysiologie
 Neurology & clinical neurophysiology
 Optimierung
 Optimization
K10plus-PPN:1906404747
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69264346   QR-Code
zum Seitenanfang