Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Craciunescu, Luca [VerfasserIn]   i
 Asbach, Maximilian [VerfasserIn]   i
 Wirsing, Sara [VerfasserIn]   i
 Hammer, Sebastian [VerfasserIn]   i
 Unger, Frederik [VerfasserIn]   i
 Broch, Katharina [VerfasserIn]   i
 Schreiber, Frank [VerfasserIn]   i
 Witte, Gregor [VerfasserIn]   i
 Dreuw, Andreas [VerfasserIn]   i
 Tegeder, Petra [VerfasserIn]   i
 Fantuzzi, Felipe [VerfasserIn]   i
 Engels, Bernd [VerfasserIn]   i
Titel:Cluster-based approach utilizing optimally tuned TD-DFT to calculate absorption spectra of organic semiconductor thin films
Verf.angabe:Luca Craciunescu, Maximilian Asbach, Sara Wirsing, Sebastian Hammer, Frederik Unger, Katharina Broch, Frank Schreiber, Gregor Witte, Andreas Dreuw, Petra Tegeder, Felipe Fantuzzi, and Bernd Engels
E-Jahr:2023
Jahr:December 11, 2023
Illustrationen:Illustrationen, Diagramme
Fussnoten:Gesehen am 22.10.2024
Weitere Titel:Titel des übergeordneten Virtual special issue: First-principles simulations of molecular optoelectronic materials : elementary excitations and spatiotemporal dynamics
Titel Quelle:Enthalten in: Journal of chemical theory and computation
Ort Quelle:Washington, DC : [Verlag nicht ermittelbar], 2004
Jahr Quelle:2023
Band/Heft Quelle:19(2023), 24, Seite 9369-9387
ISSN Quelle:1549-9626
Abstract:The photophysics of organic semiconductor (OSC) thin films or crystals has garnered significant attention in recent years since a comprehensive theoretical understanding of the various processes occurring upon photoexcitation is crucial for assessing the efficiency of OSC materials. To date, research in this area has relied on methods using Frenkel-Holstein Hamiltonians, calculations of the GW-Bethe-Salpeter equation with periodic boundaries, or cluster-based approaches using quantum chemical methods, with each of the three approaches having distinct advantages and disadvantages. In this work, we introduce an optimally tuned, range-separated time-dependent density functional theory approach to accurately reproduce the total and polarization-resolved absorption spectra of pentacene, tetracene, and perylene thin films, all representative OSC materials. Our approach achieves excellent agreement with experimental data (mostly ≤0.1 eV) when combined with the utilization of clusters comprising multiple monomers and a standard polarizable continuum model to simulate the thin-film environment. Our protocol therefore addresses a major drawback of cluster-based approaches and makes them attractive tools for OSC investigations. Its key advantages include its independence from external, system-specific fitting parameters and its straightforward application with well-known quantum chemical program codes. It demonstrates how chemical intuition can help to reduce computational cost and still arrive at chemically meaningful and almost quantitative results.
DOI:doi:10.1021/acs.jctc.3c01107
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1021/acs.jctc.3c01107
 DOI: https://doi.org/10.1021/acs.jctc.3c01107
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1906411816
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69264359   QR-Code
zum Seitenanfang