| Online-Ressource |
Verfasst von: | Teodorescu, Bianca [VerfasserIn]  |
| Gilberg, Leonard [VerfasserIn]  |
| Melton, Philip William [VerfasserIn]  |
| Hehr, Rudolph Matthias [VerfasserIn]  |
| Guzel, Hamza Eren [VerfasserIn]  |
| Koc, Ali Murat [VerfasserIn]  |
| Baumgart, André [VerfasserIn]  |
| Maerkisch, Leander [VerfasserIn]  |
| Ataide, Elmer Jeto Gomes [VerfasserIn]  |
Titel: | A systematic review of deep learning-based spinal bone lesion detection in medical images |
Verf.angabe: | Bianca Teodorescu, Leonard Gilberg, Philip William Melton, Rudolph Matthias Hehr, Hamza Eren Guzel, Ali Murat Koc, Andre Baumgart, Leander Maerkisch, and Elmer Jeto Gomes Ataide |
E-Jahr: | 2024 |
Jahr: | September 2024 |
Umfang: | 11 S. |
Fussnoten: | Online veröffentlicht: 21. Juli, 2024 ; Gesehen am 23.10.2024 |
Titel Quelle: | Enthalten in: Acta radiologica |
Ort Quelle: | London : Sage, 1921 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 65(2024), 9, Seite 1115-1125 |
ISSN Quelle: | 1600-0455 |
Abstract: | Spinal bone lesions encompass a wide array of pathologies, spanning from benign abnormalities to aggressive malignancies, such as diffusely localized metastases. Early detection and accurate differentiation of the underlying diseases is crucial for every patient's clinical treatment and outcome, with radiological imaging being a core element in the diagnostic pathway. Across numerous pathologies and imaging techniques, deep learning (DL) models are progressively considered a valuable resource in the clinical setting. This review describes not only the diagnostic performance of these models and the differing approaches in the field of spinal bone malignancy recognition, but also the lack of standardized methodology and reporting that we believe is currently hampering this newly founded area of research. In line with their established and reliable role in lesion detection, this publication focuses on both computed tomography and magnetic resonance imaging, as well as various derivative modalities (i.e. SPECT). After conducting a systematic literature search and subsequent analysis for applicability and quality using a modified QUADAS-2 scoring system, we confirmed that most of the 14 identified studies were plagued by major limitations, such as insufficient reporting of model statistics and data acquisition, a lacking external validation dataset, and potentially biased annotation. Although we experienced these limitations, we nonetheless conclude that the potential of these methods shines through in the presented results. These findings underline the need for more stringent quality controls in DL studies, as well as model development to afford increased insight and progress in this promising novel field. |
DOI: | doi:10.1177/02841851241263066 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1177/02841851241263066 |
| Volltext: https://journals.sagepub.com/doi/10.1177/02841851241263066 |
| DOI: https://doi.org/10.1177/02841851241263066 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | deep learning |
| artificial intelligence |
| computed tomography |
| magnetic resonance imaging |
| Spinal lesions |
K10plus-PPN: | 1906612021 |
Verknüpfungen: | → Zeitschrift |
¬A¬ systematic review of deep learning-based spinal bone lesion detection in medical images / Teodorescu, Bianca [VerfasserIn]; September 2024 (Online-Ressource)