Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Linear and nonlinear system modeling
Mitwirkende:Roy, Tamal [HerausgeberIn]   i
 Tripathi, Suman Lata [HerausgeberIn]   i
 Ganguli, Souvik [HerausgeberIn]   i
Verf.angabe:edited by Tamal Roy, Suman Lata Tripathi and Souvik Ganguli
Verlagsort:Hoboken, NJ ; Beverly, MA
 Hoboken, NJ ; Beverly, MA
Verlag:John Wiley & Sons, Inc
 Scrivener Publishing LLC
Jahr:2024
 2024
Umfang:1 online resource
Fussnoten:Description based on online resource; title from digital title page (viewed on September 11, 2024)
ISBN:978-1-119-84753-3
 1-119-84753-2
 978-1-119-84751-9
 1-119-84751-6
 978-1-119-84752-6
 1-119-84752-4
 978-1-119-84742-7
Abstract:Written and edited by a team of experts in the field, this exciting new volume presents the cutting-edge techniques, latest trends, and state-of-the-art practical applications in linear and nonlinear system modeling. Mathematical modeling of control systems is, essentially, extracting the essence of practical problems into systematic mathematical language. In system modeling, mathematical expression deals with modeling and its applications. It is characterized that how a modeling competency can be categorized and its activity can contribute to building up these competencies. Mathematical modeling of a practical system is an attractive field of research and an advanced subject with a variety of applications. The main objective of mathematical modeling is to predict the behavior of the system under different operating conditions and to design and implement efficient control strategies to achieve the desired performance. A considerable effort has been directed to the development of models, which must be understandable and easy to analyze. It is a very difficult task to develop mathematical modeling of complicated practical systems considering all its possible high-level non-linearity and cross couple dynamics. Although mathematical modeling of nonlinear systems sounds quite interesting, it is difficult to formulate the general solution to analyze and synthesize nonlinear dynamical systems. Most of the natural processes are nonlinear, having very high computational complexity of several numerical issues. It is impossible to create any general solution or individual procedure to develop exact modeling of a non-linear system, which is often improper and too complex for engineering practices. Therefore, some series of approximation procedures are used, in order to get some necessary knowledge about the nonlinear system dynamics. There are several complicated mathematical approaches for solving these types of problems, such as functional analysis, differential geometry or the theory of nonlinear differential equations.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781119847427/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Théorie de la commande
K10plus-PPN:1907897860
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4611084167
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69271435   QR-Code
zum Seitenanfang