Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vellala, Abhinay K. [VerfasserIn]   i
 Mogler, Carolin [VerfasserIn]   i
 Haag, Florian [VerfasserIn]   i
 Tollens, Fabian [VerfasserIn]   i
 Rudolf, Henning [VerfasserIn]   i
 Pietsch, Friedrich L. [VerfasserIn]   i
 Wängler, Carmen [VerfasserIn]   i
 Wängler, Björn [VerfasserIn]   i
 Schönberg, Stefan [VerfasserIn]   i
 Froelich, Matthias F. [VerfasserIn]   i
 Hertel, Alexander [VerfasserIn]   i
Titel:Comparing quantitative image parameters between animal and clinical CT-scanners
Titelzusatz:a translational phantom study analysis
Verf.angabe:Abhinay Vellala, Carolin Mogler, Florian Haag, Fabian Tollens, Henning Rudolf, Friedrich Pietsch, Carmen Wängler, Björn Wängler, Stefan O. Schoenberg, Matthias F. Froelich and Alexander Hertel
E-Jahr:2024
Jahr:05 June 2024
Umfang:9 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 11.11.2024
Titel Quelle:Enthalten in: Frontiers in medicine
Ort Quelle:Lausanne : Frontiers Media, 2014
Jahr Quelle:2024
Band/Heft Quelle:11(2024) vom: 5. Juni, Artikel-ID 1407235, Seite 1-9
ISSN Quelle:2296-858X
Abstract:<sec id="sec1"><title>Purpose</title><p>This study compares phantom-based variability of extracted radiomics features from scans on a photon counting CT (PCCT) and an experimental animal PET/CT-scanner (Albira II) to investigate the potential of radiomics for translation from animal models to human scans. While oncological basic research in animal PET/CT has allowed an intrinsic comparison between PET and CT, but no 1:1 translation to a human CT scanner due to resolution and noise limitations, Radiomics as a statistical and thus scale-independent method can potentially close the critical gap.</p></sec><sec id="sec2"><title>Methods</title><p>Two phantoms were scanned on a PCCT and animal PET/CT-scanner with different scan parameters and then the radiomics parameters were extracted. A Principal Component Analysis (PCA) was conducted. To overcome the limitation of a small dataset, a data augmentation technique was applied. A Ridge Classifier was trained and a Feature Importance- and Cluster analysis was performed.</p></sec><sec id="sec3"><title>Results</title><p>PCA and Cluster Analysis shows a clear differentiation between phantom types while emphasizing the comparability of both scanners. The Ridge Classifier exhibited a strong training performance with 93% accuracy, but faced challenges in generalization with a test accuracy of 62%.</p></sec><sec id="sec4"><title>Conclusion</title><p>These results show that radiomics has great potential as a translational tool between animal models and human routine diagnostics, especially using the novel photon counting technique. This is another crucial step towards integration of radiomics analysis into clinical practice.</p></sec>
DOI:doi:10.3389/fmed.2024.1407235
URL:kostenfrei: Volltext: https://doi.org/10.3389/fmed.2024.1407235
 kostenfrei: Volltext: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1407235/full
 DOI: https://doi.org/10.3389/fmed.2024.1407235
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Animal Models
 Diagnostic integration
 Photon counting CT
 Radiomics
 translation
K10plus-PPN:1908236108
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69272394   QR-Code
zum Seitenanfang