Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Strittmatter, Anika [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
 Zöllner, Frank G. [VerfasserIn]   i
Titel:Deep learning-based affine medical image registration for multimodal minimal-invasive image-guided interventions - a comparative study on generalizability
Verf.angabe:Anika Strittmatter, Lothar R. Schad, Frank G. Zöllner
E-Jahr:2024
Jahr:May 2024
Umfang:27 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 22. Juni 2023, Artikelversion: 24. Mai 2024 ; Gesehen am 15.11.2024
Titel Quelle:Enthalten in: Zeitschrift für medizinische Physik
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1990
Jahr Quelle:2024
Band/Heft Quelle:34(2024), 2, Seite 291-317
ISSN Quelle:1876-4436
Abstract:Multimodal image registration is applied in medical image analysis as it allows the integration of complementary data from multiple imaging modalities. In recent years, various neural network-based approaches for medical image registration have been presented in papers, but due to the use of different datasets, a fair comparison is not possible. In this research 20 different neural networks for an affine registration of medical images were implemented. The networks’ performance and the networks’ generalizability to new datasets were evaluated using two multimodal datasets - a synthetic and a real patient dataset - of three-dimensional CT and MR images of the liver. The networks were first trained semi-supervised using the synthetic dataset and then evaluated on the synthetic dataset and the unseen patient dataset. Afterwards, the networks were finetuned on the patient dataset and subsequently evaluated on the patient dataset. The networks were compared using our own developed CNN as benchmark and a conventional affine registration with SimpleElastix as baseline. Six networks improved the pre-registration Dice coefficient of the synthetic dataset significantly (p-value <0.05) and nine networks improved the pre-registration Dice coefficient of the patient dataset significantly and are therefore able to generalize to the new datasets used in our experiments. Many different machine learning-based methods have been proposed for affine multimodal medical image registration, but few are generalizable to new data and applications. It is therefore necessary to conduct further research in order to develop medical image registration techniques that can be applied more widely.
DOI:doi:10.1016/j.zemedi.2023.05.003
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.zemedi.2023.05.003
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0939388923000715
 DOI: https://doi.org/10.1016/j.zemedi.2023.05.003
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Affine
 Deep learning
 Medical images
 Multimodal data
 Neural networks
 Registration
K10plus-PPN:1908764163
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69273918   QR-Code
zum Seitenanfang