Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gang, Qiangqiang [VerfasserIn]   i
 Feng, Jie [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Zhang, Ke [VerfasserIn]   i
Titel:Predicting nodal metastasis progression of oral tongue cancer using a hidden Markov model in MRI
Verf.angabe:Qiangqiang Gang, Jie Feng, Hans-Ulrich Kauczor and Ke Zhang
E-Jahr:2024
Jahr:06 June 2024
Umfang:11 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 21.11.2024
Titel Quelle:Enthalten in: Frontiers in oncology
Ort Quelle:Lausanne : Frontiers Media, 2011
Jahr Quelle:2024
Band/Heft Quelle:14(2024) vom: Juni, Artikel-ID 1360253, Seite 1-11
ISSN Quelle:2234-943X
Abstract:Objectives: The presence of occult nodal metastases in patients with oral tongue squamous cell carcinomas (OTSCCs) has implications for treatment. More than 30% of patients will have occult nodal metastases, yet a considerable number of patients undergo unnecessary invasive neck dissection to confirm nodal status. In this work, we propose a probabilistic model for lymphatic metastatic spread that can quantify the risk of microscopic involvement at the lymph node level (LNL) given the location of macroscopic metastases and the tumor stage using the MRI method. Materials and methods: A total of 108 patients of OTSCCs were included in the study. A hidden Markov model (HMM) was used to compute the probabilities of transitions between states over time based on MRI. Learning of the transition probabilities was performed via Markov chain Monte Carlo sampling and was based on a dataset of OTSCC patients for whom involvement of individual LNLs was reported. Results: Our model found that the most common involvement was that of level I and level II, corresponding to a high probability of ????b1 = 0.39 ± 0.05, ????b2 = 0.53 ± 0.09; lymph node level I had metastasis, and the probability of metastasis in lymph node II was high (93.79%); lymph node level II had metastasis, and the probability of metastasis in lymph node III was small (7.88%). Lymph nodes progress faster in the early stage and slower in the late stage. Conclusion: An HMM can produce an algorithm that is able to predict nodal metastasis evolution in patients with OTSCCs by analyzing the macroscopic metastases observed in the upstream levels, and tumor category.
DOI:doi:10.3389/fonc.2024.1360253
URL:kostenfrei: Volltext: https://doi.org/10.3389/fonc.2024.1360253
 kostenfrei: Volltext: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1360253/full
 DOI: https://doi.org/10.3389/fonc.2024.1360253
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 Hidden markov model
 level of metastatic lymph nodes
 Lymph node metastases
 Oral cavity squamous cell carcinoma
K10plus-PPN:1909299286
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69275594   QR-Code
zum Seitenanfang