Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mainik, Philipp [VerfasserIn]   i
 Aponte-Santamaria, Camilo [VerfasserIn]   i
 Fladung, Magdalena [VerfasserIn]   i
 Curticean, Ernest Ronald [VerfasserIn]   i
 Wacker, Irene [VerfasserIn]   i
 Hofhaus, Götz [VerfasserIn]   i
 Bastmeyer, Martin [VerfasserIn]   i
 Schröder, Rasmus R. [VerfasserIn]   i
 Gräter, Frauke [VerfasserIn]   i
 Blasco, Eva [VerfasserIn]   i
Titel:Responsive 3D printed microstructures based on collagen folding and unfolding [data]
Verf.angabe:Philipp Mainik, Camilo Aponte-Santamaría, Magdalena Fladung, Ronald Ernest Curticean, Irene Wacker, Götz Hofhaus, Martin Bastmeyer, Rasmus R. Schröder, Frauke Gräter, Eva Blasco
Verlagsort:Heidelberg
Verlag:Universität
E-Jahr:2024
Jahr:2024-11-24
Umfang:1 Online-Ressource (5 Files)
Fussnoten:Gefördert durch: DFG Excellence Cluster “3D Matter Made to Order”: EXC-2082/1-390761711; Carl Zeiss Foundation: FocusHEiKA; Klaus Tschira Foundation; DFG grant: INST 35/1597-1 FUGG; DFG grant: INST 35/1503-1 FUGG ; Gesehen am 27.11.2024
Abstract:Mimicking extracellular matrices holds great potential for tissue engineering in biological and biomedical applications. A key compound for mechanical stability of these matrices is collagen, which also plays an important role in many intra- and intercellular processes. Two-photon 3D laser printing offers structuring of these matrices with subcellular resolution. So far, efforts on 3D microprinting of collagen have been limited to simple geometries and customized set-ups. Herein, we present an easily accessible approach using a collagen type I methacrylamide (ColMA) ink system which can be stored at room temperature and be precisely printed using a commercial two-photon 3D laser printer. The formulation and printing parameters are carefully optimized enabling the manufacturing of defined 3D microstructures. Furthermore, these printed microstructures show a fully reversible response upon heating and cooling in multiple cycles, indicating successful collagen folding and unfolding. This experimental observation has been supported by molecular dynamics simulations. Thus, our study opens new perspectives for designing new responsive biomaterials for 4D (micro)printing.
DOI:doi:10.11588/data/WTFEHF
URL:kostenfrei: Volltext: https://doi.org/10.11588/data/WTFEHF
 kostenfrei: Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/WTFEHF
 DOI: https://doi.org/10.11588/data/WTFEHF
Datenträger:Online-Ressource
Dokumenttyp:Forschungsdaten
 Datenbank
Sprache:eng
Sonstige Nr.:Grant number: DFG INST 35/1597-1 FUGG
 Grant number: DFG INST 35/1503-1 FUGG
Sach-SW:Chemistry
 Engineering
K10plus-PPN:1909651087
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69277341   QR-Code
zum Seitenanfang